典型相关分析(Canonical Correlation Analysis,CCA)是一种常用的多变量统计方法,它可以用于从多个特征集中找到它们之间的线性关系。在脑机接口(Brain-Computer Interface,BCI)领域,典型相关分析被广泛应用于SSVEP(Steady-State Visually Evoked Potential)解码算法中。本文将介绍扩展典型相关分析方法,并提供相应的源代码实现。
SSVEP是一种由视觉刺激引起的稳态脑电活动,它在脑电信号中呈现出特定的频率成分。通过测量头皮上的脑电信号,可以识别被试者注意到的特定频率的视觉刺激。SSVEP解码算法的目标是从脑电信号中识别出被试者所关注的特定频率,以实现脑机接口的控制。
扩展典型相关分析是一种改进的典型相关分析方法,它可以有效地处理多个特征集之间的非线性关系。以下是使用Python编写的扩展典型相关分析算法的示例代码:
import numpy as np
from scipy.linalg import<