推荐系统中召回率计算方式及示例代码

147 篇文章 36 订阅 ¥59.90 ¥99.00
本文介绍了推荐系统中召回率的概念,作为评估性能的关键指标,召回率衡量了推荐系统找到用户真正感兴趣物品的能力。文中给出了召回率的计算公式及一个简单的示例代码,展示如何计算召回率,并强调了在实际应用中需要根据具体系统进行调整以优化召回率,以提升用户满意度。
摘要由CSDN通过智能技术生成

召回率(Recall)是评估推荐系统性能的重要指标之一,它衡量了在所有真实正例中,有多少被成功地推荐给了用户。在推荐系统中,我们希望尽可能多地找到用户可能感兴趣的物品,以提高用户的满意度和点击率。下面我将介绍召回率的计算方式,并附上示例代码来说明具体的实现方法。

召回率可以用以下公式来计算:
Recall = TP / (TP + FN)
其中,TP代表真实正例中被成功预测为正例的数量,即推荐系统正确地将用户感兴趣的物品推荐给了用户;FN代表真实正例中被错误预测为负例的数量,即推荐系统未能将用户感兴趣的物品推荐给用户。

以下是一个简单的示例代码,用于计算召回率:

def compute_recall(true_positive, false_negative):
    recall = true_positive / (true_positive + false_negative)
    return recall

# 在此处填入相应数据
true_positive = 1000
false_negative = 200

recall = compute_recall(true_positive, false_negative)
print("召回率:", recall)

在示例代码中,我们定义了一个名为compute_recall</

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值