从“四色问题”谈计算机辅助证明数学定理

1852 年,英国地图制图师弗朗西斯·古特里(Francis Guthrie)在观察地图时提出了著名的“给地图着色”的问题。他发现只需要四种颜色就可以对地图进行着色,使得相邻的国家颜色不同。但令他不解的是,这个数字“4”是否是最优的呢?于是他向他的弟弟弗雷德里克·古特里(Frederick Guthrie)及其朋友们寻求帮助。在交流中,他们逐渐认识到这个问题与数学有着深刻的联系。于是弗雷德里克向他的老师——伦敦大学学院的数学家奥古斯塔斯·德摩根(Augustus De Morgan)寻求帮助。德摩根教授尝试之后也无能为力。 1878 年,英国数学家阿瑟·凯莱(Arthur Cayley)在伦敦数学会上正式宣布并命名这一问题为“四色问题”。这个问题的解决涉及图论等近代数学知识,因此长达120年的时间里,数学界无法解决这个问题是否正确。

四色问题的通俗叙述中有很多无效信息,例如每个国家的形状、面积、经纬度等等。唯一重要的信息便是——相邻(即两个区域共享同一段边界)。忽略掉这些无效信息,用图论的数学语言精确再次抽象及描述问题:

给定一个图(graph)G= (V, E),其中非空集合 V 是顶点(vertex)集,E 是边(edge)集。这里其实要用到对偶图的概念,也就是说,用一个顶点ν∈V来表示地图上的一个国家;用一条边 e12=(ν1, ν2)∈E 来表示两个顶点(国家)ν1, ν2 是相邻的。下面我们只考虑简单无向图——图的边是无向的,即 e12=e21;没有重复边,即连接顶点 ν1, ν2 的边最多只有一条;没有自环,即不存在只连接一个顶点的边。

于是四色问题便抽象成了一个数学猜想:

对一个简单无向图 G=(V, E) 的顶点进行着色,使相邻的点颜色不同,那么最少只需要 4 种颜色。最少所需的颜色数称之为——色数(chromatic number)

1879 年,英国律师阿福瑞德·肯普(Alfred Kempe)为四色猜想的证明提供了重要的思路。肯普提出,任何一个简单无向图 G=(V, E) 中至少有一个顶点具有 2、3、4 或 5 个相邻顶点(一个国家至少有 2、3、4 或 5 个邻国)。这个命题其实是欧拉公式的应用。假设图 G=(V, E) 中有 ν 个顶点、e 个边和 f 个面。首先任何一个面至少有三条边,两个相邻的面共用一条边,每条边上有 2 个顶点,因此 2e=3f。如果每个顶点都有至少 6 条边,那么 2e≥6ν。但欧拉公式告诉我们,ν-e+f=2。这就推出了一个矛盾。

肯普将上述最多具有 5 个相邻点的顶点及其相应的边命名为“不可避免的构型”。接下来他利用归纳法,移除掉这个顶点以及相邻的边,得到一个子图 G’。如果这个子图 G’ 满足四色猜想,那么称原图 G’ 是可约的,同时将移除掉的顶点及其边称为“可约构型”。

用数学的语言讲,假设包含 n 个顶点的图满足四色猜想,那么对于 n+1 个顶点的图,必有一个顶点及其边是不可避免构型。如果相邻点是三色的,那么给移除掉的点涂上第四种颜色,结论自然成立;否则,需要对原图重新涂色,争取释放这个顶点,使它的相邻点可以三色,为此肯普设计了“肯普链”的方法。

肯普的方法陆续证明了 22 国、39 国、52 国、96 国以下的地图可以四色。

1976 年,距离这个问题的提出过去了120余年。美国数学家肯尼斯·阿佩尔(Kenneth Appel)与沃尔夫格·哈肯(Wolfgang Haken)在美国伊利诺大学的两台计算机上,耗时 1200 个小时,终于完成了四色定理的证明。他们延续并改进了肯普的方法,将所有的 1936 个不可避免构型全部用计算机计算并罗列出来,并依次对其验证了其可约性。

这项工作轰动了世界,不仅仅是因为他们证明一个数学难题,更重要的是这告诉人们计算机也能用于数学的逻辑证明。在两位数学家将研究成果公之于世的当天,当地邮局为了庆祝,在所有邮件上都加盖了“四色足够”的特制邮戳。

四色问题还有个推广应用,即广播色数问题—广播电台的频率分配。

每个广播电台所发出信号的覆盖面积都是有限的,信号越强的电台它的覆盖范围也越广。收音机的调频(FM)波段很窄,我国的民用收音机调频范围为 FM87.5-108MHz,可用带宽其实非常狭窄。如果我国每个省市的广播电台都发出不同频率的信号,显然是不切实际的。而两个同频率的电台只有在相距足够远的情况下,它们的信号才不会互相干扰。例如,天津相声广播、沈阳都市广播、泰州交通音乐广播的FM频率均为 92.1MHz;而秦皇岛,为了避免相同信号的叠加干扰,其广播电台频率表中并没有分配 92.1 MHz 的信号波段,是不能和唐山、天津产生干扰的。

广播频率分配问题用精确的数学语言描述就是:

与四色定理类似,给定一个简单无向图 G=(V, E),我们用一个整数集合 K={1,…,k} 来表示颜色集,用 d(u, ν)来定义两个顶点u, ν之间的距离。考虑映射 f:V→{1,…,k},它满足对任意两个顶点 u, ν∈V,以及任意的整数 c∈K,如果 f(u)=f(ν)=c(即顶点 u 和 ν 的颜色相同),那么 u, ν 之间的距离 d(u, ν)>c(也就是说具有相同颜色的两个顶点距离足够远;考虑上文的实际背景,这意味着信号频率相同的广播电台距离足够远)。这样的映射 f 就构成了一个 packing k- 染色方案,能满足 packing 染色方案的最小整数就称为图的 packing 染色数(packing coloring number)χρ(G)。

packing 染色问题其实是在地图着色问题上加了更强的限制。当 K={1} 时,packing 1- 染色问题就是最原始的地图着色问题,即要求相邻两个顶点颜色不同,可以用上述地图四色问题的解法。

2023 年 1 月,这个扩展问题才正式被攻破,也是借助计算机。来自卡耐基梅隆大学的研究生苏威卡塞乌斯(Bernardo Subercaseaux)和教授马金·海勒(Marijn J. H. Heule)两人宣布彻底解决了平面整数集 Z2 的 packing 染色问题——他们在文章中证明 χρ(Z2)= 15,即只用 1-15 这 15 个数字就能填充整个平面网格,并保证两个具有相同数字的网格之间的距离大于这个数字。

随着Ai技术的发展,计算机辅助证明和数学推演的应用场景越来越多。

2025年3月,我开始用四色YG260、YG262、RV338,PG38,钢笔(边界)粗细纹路排线的细密和方向性控制远近、模糊和细节明暗等,四色的抽象其实是来自数学。^_*
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值