一、个人背景
-
基本背景: 双非本硕+电子信息专业
-
过往经历:0实习,1段项目经历
-
加入时间: 24年2月中,0实习&0经验加入
-
目前收获: 2段中厂offer✅,继续卷ing…
二、具体面经
1、业务一面
1.自我介绍一下
-
第一点:学校经历,讲述研究方向,论文发表情况和获奖经历
-
第二点:产品经历,简要概括c端项目和b端实习
-
第三点:做产品的个人优势,有技术背景,使用java开发过后端项目,有极强的逻辑性和需求的抽象能力,可以更好的和开发部门对接,降低沟通成本。
-
_第四点:根据JD体现出自己差异化的优势,精通AIGC各模态技术原理,使用过大量AI产品,对AI产品有自己的理解,并且对AIGC方向有极大热情。(这段需要真的有优势的点,面试官一定会细问,如果不是很自信,别给自_己挖坑)
2.讲一下你实习的产品吧
-
第一点先概括产品(让面试官先了解我们的产品是什么):产品解决什么样的用户痛点,我们的产品定位是什么。
-
第二点详细讲述一下工作中的动作
-
第三点讲述产品最终达到什么样的成果(用数据来支撑)
3.你觉得你做的最好的一个动作是什么?
针对产品优化的动作展开说明。这里突出了自己做优化阶段如何应用自己的技术背景,打出差异化的点。
例如:在优化阶段,我负责收集错误样本,并总结错误类型,与开发和算法去对接,优化我们的产品。
其中我应用自己的技术背景,将错误类型按照技术的思维去分类,并且将需求抽象成技术语言,大大降低了与开发部门的沟通成本。
4.你平时看直播吗,都看哪些直播?
实事求是的说,大部分只会看视频直播,例如游戏直播。
虽然我是喜马拉雅的重度用户,但是我一般都听小说或者脱口秀,对于喜马拉雅的声音直播没有实际接触过,但是会有所了解。
5.你说你平常对AIGC接触的多?都用什么产品?
分类阐述一下,大语言模型类、文生图/视频类、AI聊天类还有AI agent类。
6.我之前去做了你的功课,还去搜了一下你的论文,写的很不错。但是我是文科生,技术点看不太懂,你可以简单讲一下你的论文吗?
用产品的思维去讲述了一下我的论文,技术点稍微带过就好,因为面试官也听不懂,主要体现产品思维。
7.反问:请问我们这个产品线主要做什么业务呢?
用AIGC给XX赋能,例如实时给主播提供观众用户特征或者生成用户感兴趣的话题。总体是做创新的产品业务,需要每天跟开发部门开会探讨,不断迭代功能。
2、业务二面
1.自我介绍
2.科研经历深挖:两篇论文挑一个对你帮助比较大的讲一下。包括背景和最后的产出。
我选择第二篇,基于人工智能的用户导向型语义通信吧。因为我在这个项目的过程中是完全以产品的视角去做的。
3.你说这个性能的提升能详细介绍一下吗?
就给面试官讲解了一下,这边是科研内容了,就不展开讲了。
4.项目经历深挖:产品项目中比较困难的点。
该项目中用户调研阶段的定性调研比较困难,由于我们项目组的成员都在校生,没有过多的资源,所以对于深度访谈用户的选取不是很方便,选择周围的同学作为调研对象,客观性就会大大降低。
所以当时我们项目组成员动用线下关系链,去找到一些外校同学和社会人员,对我们不熟悉的人去做这个深度访谈,提高了访谈结果的客观性。
5.你实习是做AI产品经理,和传统的C/B端产品经理你认为有什么区别?
我认为AI产品经理不能和CB端做区分,因为他们的定义是不一样的。
C/B端产品经理是以面向的用户群体来区分的,而AI产品经理是按照工作内容来区分的,AI产品经理既有C也有B。
我就内容方面讲一下相同点和区别吧,我认为相同的部分就是业务流程其实跟B端产品一样,都是从用户分析-需求调研-产品设计-竞品分析-优化产品。
不同点在于在产品优化阶段,AI产品经理可能需要更加关注大模型方面的算法能力,所以对技术背景会有要求,要做更多的算法性能优化工作。
「offer求职」补充:
“PS:大模型技术产品需要更懂技术,最好相关背景;而应用型产品经理不需要技术出身,也不需要特别懂技术,核心是场景挖掘和需求洞察)”
5.做AI产品我认为其实离不开标注,所以你了解标注吗?
了解,标注方面的工作也是我实习中工作重点。
6.你是标注人员呢,还是给标注提需求的角色呢?
我同时兼具这两个角色。
给标注提需求的角色是指,在产品优化阶段,我会收集错误数据,给标注提需求,让他们进行数据清洗。
标注人员的角色是指,我会作为产品经理去对我们的标注工具产品做一个优化,为了提高我们标注人员的工作效率。
所以我自己也会去使用我们的标注产品,成为用户才能更好的理解用户,发觉标注人员的需求。
7.什么时候可以入职。
最后
为了助力朋友们跳槽面试、升职加薪、职业困境,提高自己的技术,给大家分享一下我自己正在使用的面试题合集,真的很全面,就算不作为面试题使用,也能用作查缺补漏的学习资料!!
每一章节都是站在企业考察思维出发,作为招聘者角度回答。从考察问题延展到考察知识点,再到如何优雅回答一面俱全,可以说是求职面试的必备宝典,每一部分都有上百页内容,接下来具体展示,完整版可直接下方扫码领取。

面试题展示
1、请解释一下BERT模型的原理和应用场景。
答案:BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的语言模型,通过双向Transformer编码器来学习文本的表示。它在自然语言处理任务中取得了很好的效果,如文本分类、命名实体识别等。
2、什么是序列到序列模型(Seq2Seq),并举例说明其在自然语言处理中的应用。
答案:Seq2Seq模型是一种将一个序列映射到另一个序列的模型,常用于机器翻译、对话生成等任务。例如,将英文句子翻译成法文句子。
3、请解释一下Transformer模型的原理和优势。
答案:Transformer是一种基于自注意力机制的模型,用于处理序列数据。它的优势在于能够并行计算,减少了训练时间,并且在很多自然语言处理任务中表现出色。
4、什么是注意力机制(Attention Mechanism),并举例说明其在深度学习中的应用。
答案:注意力机制是一种机制,用于给予模型对不同部分输入的不同权重。在深度学习中,注意力机制常用于提升模型在处理长序列数据时的性能,如机器翻译、文本摘要等任务。
5、请解释一下卷积神经网络(CNN)在计算机视觉中的应用,并说明其优势。
答案:CNN是一种专门用于处理图像数据的神经网络结构,通过卷积层和池化层提取图像特征。它在计算机视觉任务中广泛应用,如图像分类、目标检测等,并且具有参数共享和平移不变性等优势。
6、请解释一下生成对抗网络(GAN)的原理和应用。
答案:GAN是一种由生成器和判别器组成的对抗性网络结构,用于生成逼真的数据样本。它在图像生成、图像修复等任务中取得了很好的效果。
7、请解释一下强化学习(Reinforcement Learning)的原理和应用。
答案:强化学习是一种通过与环境交互学习最优策略的机器学习方法。它在游戏领域、机器人控制等领域有广泛的应用。
8、请解释一下自监督学习(Self-Supervised Learning)的原理和优势。
答案:自监督学习是一种无需人工标注标签的学习方法,通过模型自动生成标签进行训练。它在数据标注困难的情况下有很大的优势。
9、解释一下迁移学习(Transfer Learning)的原理和应用。
答案:迁移学习是一种将在一个任务上学到的知识迁移到另一个任务上的学习方法。它在数据稀缺或新任务数据量较小时有很好的效果。
10、请解释一下模型蒸馏(Model Distillation)的原理和应用。
答案:模型蒸馏是一种通过训练一个小模型来近似一个大模型的方法。它可以减少模型的计算和存储开销,并在移动端部署时有很大的优势。
11、请解释一下LSTM(Long Short-Term Memory)模型的原理和应用场景。
答案:LSTM是一种特殊的循环神经网络结构,用于处理序列数据。它通过门控单元来学习长期依赖关系,常用于语言建模、时间序列预测等任务。
12、请解释一下BERT模型的原理和应用场景。
答案:BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的语言模型,通过双向Transformer编码器来学习文本的表示。它在自然语言处理任务中取得了很好的效果,如文本分类、命名实体识别等。
13、什么是注意力机制(Attention Mechanism),并举例说明其在深度学习中的应用。
答案:注意力机制是一种机制,用于给予模型对不同部分输入的不同权重。在深度学习中,注意力机制常用于提升模型在处理长序列数据时的性能,如机器翻译、文本摘要等任务。
14、请解释一下生成对抗网络(GAN)的原理和应用。
答案:GAN是一种由生成器和判别器组成的对抗性网络结构,用于生成逼真的数据样本。它在图像生成、图像修复等任务中取得了很好的效果。
15、请解释一下卷积神经网络(CNN)在计算机视觉中的应用,并说明其优势。
答案:CNN是一种专门用于处理图像数据的神经网络结构,通过卷积层和池化层提取图像特征。它在计算机视觉任务中广泛应用,如图像分类、目标检测等,并且具有参数共享和平移不变性等优势。
16、请解释一下强化学习(Reinforcement Learning)的原理和应用。
答案:强化学习是一种通过与环境交互学习最优策略的机器学习方法。它在游戏领域、机器人控制等领域有广泛的应用。
17、请解释一下自监督学习(Self-Supervised Learning)的原理和优势。
答案:自监督学习是一种无需人工标注标签的学习方法,通过模型自动生成标签进行训练。它在数据标注困难的情况下有很大的优势。
18、请解释一下迁移学习(Transfer Learning)的原理和应用。
答案:迁移学习是一种将在一个任务上学到的知识迁移到另一个任务上的学习方法。它在数据稀缺或新任务数据量较小时有很好的效果。
19、请解释一下模型蒸馏(Model Distillation)的原理和应用。
答案:模型蒸馏是一种通过训练一个小模型来近似一个大模型的方法。它可以减少模型的计算和存储开销,并在移动端部署时有很大的优势。
20、请解释一下BERT中的Masked Language Model(MLM)任务及其作用。
答案:MLM是BERT预训练任务之一,通过在输入文本中随机mask掉一部分词汇,让模型预测这些被mask掉的词汇。
由于文章篇幅有限,不能将全部的面试题+答案解析展示出来,有需要完整面试题资料的朋友,可以扫描下方二维码免费领取哦!!! 👇👇👇👇
