【AI大模型】不同限制条件下使用知识图谱为LLM提供稳定及高效的推理能力

一、简介

知识图谱(Knowledge Graphs, KGs)以其结构化的方式有效地表示和组织现实世界中的复杂关系,成为信息存储和查询的重要工具。与此同时,大语言模型(Large Language Models, LLMs)在自然语言处理任务中展现出卓越的理解和生成能力。由于LLMs在处理推理任务时,常常面临知识更新滞后和生成幻觉(hallucination)等问题,研究者们尝试将LLMs与KGs相结合,以增强模型的推理能力和准确性。然而,现实情况中往往会有诸多限制条件,例如不完整的KG可能会影响推理链的完整性,进一步影响推理的效率和准确性;另一方面,大规模的LLMs会表现出强大的推理能力,但另一方面也意味着更高的时间和成本的开销。基于以上分析,本文将介绍两篇相关研究,探讨如何在小规模LLMs和不完整KG下如何利用KG提升LLM的推理性能。

二、LightPROF: A Lightweight Reasoning Framework for Large Language Model on Knowledge Graph(AAAI 2025)

大型语言模型(LLMs)在文本理解和零样本推理方面表现出色。然而,知识更新的延迟可能导致其推理错误或产生有害结果。知识图谱(KGs)通过结构化地组织和连接大量实体和关系,为LLMs的推理过程提供丰富且可靠的上下文信息。现有的基于KG的LLM推理方法仅以文本形式将KG的知识注入提示中,忽略了其结构信息。此外,它们大多依赖于闭源模型或参数量大的开源模型,导致资源消耗高。为了解决这些问题,我们提出了一种新颖的轻量级高效提示学习推理框架(LightPROF),充分利用LLMs的潜力,以参数高效的方式处理复杂的推理任务。

2.1 Retrieve-Embed-Reason

LightPROF提出了一个轻量级、高效的推理框架,该框架遵循“检索-嵌入-推理”(Retrieve-Embed-Reason)的流程,通过精确检索和细粒度结构化数据处理能力,在小规模LLM下实现了高效的复杂KG问题推理。

阶段一:推理图检索(Reasoning Graph Retrieval)

图片

针对复杂多跳知识图谱问答(KGQA)任务,如何基于问题高效、精准、稳定地从知识图谱中检索信息是关键挑战。在这一阶段,LightPROF从知识图谱中检索出与输入问题相关的推理子图,主要包括以下步骤:

  • 语义提取(Semantic Extraction):利用微调的预训练语言模型,分析输入问题,预测回答该问题所需的推理跳数,并识别出问题中的锚点实体。
  • 关系检索(Relation Retrieval):以识别出的锚点实体为起点,在知识图谱中进行有限广度优先搜索,收集与问题相关的关系链接。与传统方法不同,LightPROF选择“关系”作为检索的基本单位,而非实体,这是因为关系在知识图谱中更为稳定和直观。
  • 推理图采样(Reasoning Graph Sampling):将检索到的关系链接输入到语言模型中,计算它们与问题的语义相关性分数,选择最相关的关系链接,并基于这些链接采样构建推理图。

阶段二:知识嵌入(Knowledge Embedding)

图片

知识图谱通常蕴含丰富的结构化信息,如子图结构、关系模式以及实体间的相互关联,这些结构特征对大型语言模型(LLMs)深度理解知识图谱至关重要。然而,将结构信息转化为自然语言表述时,往往伴随语义冗余与歧义问题,难以清晰体现结构信息的本质特征,制约了LLM对这类信息的有效利用。

针对上述挑战,作者受启发于现有研究,提出一种精细紧凑的知识适配器,用于在推理图中同时编码文本和结构信息(如图3所示)。通过精细化融合文本语义与图结构特征,该知识适配器可辅助LLM更准确地把握推理图中的结构化知识,从而显著提升模型推理的准确性。具体过程如下:

  • 结构信息编码:知识适配器对推理图中的每条路径进行分解,得到一系列三元组(头实体、关系、尾实体),并使用预训练语言模型(如BERT)获取每个三元组的嵌入表示,捕捉每个实体和关系之间的局部和全局交互。
  • 融合与映射:将编码后的结构信息与原始问题的文本信息进行融合,并映射到LLM的token嵌入空间,生成结构化的提示(soft prompt)。

这一设计使得LLM能够在理解问题的同时,获取与之相关的结构化知识,从而提升推理的准确性和效率。

阶段三:推理与生成(Reasoning and Generation)

在最后阶段,LLM接收由知识适配器生成的结构化提示,结合自身的语言理解和生成能力,进行最终的推理和答案生成。值得注意的是,LightPROF仅需训练知识适配器部分,LLM本身无需微调,这种参数高效的设计使得该框架能够与各种开源LLM兼容,降低了部署和应用的门槛。

2.2 实验结果

LightPROF使用了WebQSP和CWQ两个公开KGQA基准数据集进行效果评估。在WebQSP数据集上,LightPROF取得了83.7%的准确率,显著高于基线方法的75.1%。在更具挑战性的CWQ数据集上,LightPROF也达到了59.3%的准确率,超过了基线方法的57.6%。同时作者发现,LightPROF在使用参数量仅为7B的小型LLM(如LLaMA-2-7B)时,其性能超过了使用参数量为70B的大型模型(如LLaMA-2-70B-Chat和ChatGPT)的表现。这充分证明了LightPROF框架在小规模模型上的高效性和优化性。

图片

三、Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering(EMNLP 2024)

为了解决大型语言模型(LLMs)知识不足和幻觉生成的问题,众多研究探索了将LLMs与知识图谱(KGs)结合的方法。然而,这些方法通常在传统的知识图谱问答(KGQA)任务上进行评估,其中所有回答问题所需的事实三元组都完全包含在给定的KG中。在这种情况下,LLMs主要作为代理在KG中查找答案实体,而不是有效地整合LLMs的内部知识和KG等外部知识源。实际上,KGs通常是不完整的,无法涵盖回答问题所需的所有知识。为了模拟这些现实场景并评估LLMs整合内部和外部知识的能力,我们提出在不完整知识图谱(IKGQA)下利用LLMs进行问答,并构建相应的数据集。

图片

3.1 Thinking-Searching-Generating

Generate-on-Graph(GoG)针对现实中知识图谱不完整的问题,提出了一种创新的“思考-搜索-生成”(Thinking-Searching-Generating)框架,使LLM在问答任务中既作为代理(Agent)又作为知识图谱(KG)。

该框架具体包括以下三个步骤:

  1. 思考(Thinking): 在这一阶段,LLM(大型语言模型)被视为一个智能体,负责分解问题并判断接下来的操作。它会决定是继续搜索相关信息还是基于当前状态生成相关的事实三元组。思考的过程涉及对问题的理解和对下一步行动的选择,目的是明确所需的信息。对于每个步骤 ,GoG 首先分解原始问题(Thought 1),决定应该解决下一个子问题(Thought 2)或确定它是否有足够的信息来输出最终答案(Thought 4)。然后根据之前生成的思想 ,GoG 生成一个动作 ,决定下一步是从 KG 中搜索信息(Action 1、2)或通过推理和内部知识生成更多信息(Action 3)。

  2. 搜索(Searching): 在搜索阶段,LLM使用预定义的工具(如执行SPARQL查询的KG工程师)来探索知识图谱(KG),并过滤掉无关的三元组。具体而言,LLM将根据上一步的思考结果,选择与目标实体相关的邻近实体,并从中检索最相关的关系。搜索主要分为两个子步骤:探索和过滤。

    • 探索:LLMs根据当前思考生成的目标实体,检索与其相关的邻近实体。具体来说,GoG通过搜索函数 Search[e_i]来查找目标实体 e_i的相关信息。
    • 过滤:在获得一组关系后,LLMs会根据上一个思考的内容,选择出最相关的前N个关系。这个过滤过程是通过与上一步的思考相结合来实现的。例如,在某个具体的例子中,LLMs可能从一组关系中(如创始人、总部、CEO)选择出与问题最相关的关系(如总部),以便更好地回答特定的问题。
  3. 生成(Generating): 当通过搜索未能直接获得答案时,GoG会调用生成动作。这一过程利用LLM的内部知识和推理能力,基于已探索的子图生成新的事实三元组。生成过程包括三个子步骤:选择(Choosing)、生成(Generating)和验证(Verifying)。在选择阶段,LLM会从先前观察到的相关三元组中检索出最相关的信息;在生成阶段,LLM将基于这些信息及其内部知识生成新的三元组;最后,在验证阶段,生成的三元组会被检查其正确性和相关性。

3.2 实验结果

在实验结果部分,研究者通过对不同设置下的表现进行评估,展示了Generate-on-Graph(GoG)方法在处理不完整知识图谱问答(IKGQA)任务中的优越性。具体实验结果总结如下:

GoG在实验方面使用了CWQ和WebQSP两个数据集,并使用了四种大型语言模型(LLM)作为基础模型,来判断不同的框架在完整知识图谱(CKG)或不完整知识图谱(IKG)中的表现。结果如下图所示。可以看出,相同LLM环境下,GoG在CKG和IKG中都取得了最先进的性能,与其他基于提示的方法相比,显著提高了Hits@1得分。在完整知识图谱设置下表现最佳,分别在WebQSP和CWQ数据集上达到了84.4%和75.2%的Hits@1得分。尽管WebQSP数据集中大多数问题为单跳问题,GoG仍然优于ToG和StructGPT。这表明GoG能够有效利用主题实体的邻接信息进行尾实体预测,而其他方法未能充分利用这些信息。

图片

图片

总体来看,GoG方法在处理不完整知识图谱问答任务时,展现了良好的性能,证明了将大型语言模型与不完整知识图谱结合的有效性。

四、总结

本文介绍的两项研究——LightPROF和Generate-on-Graph,分别从结构化提示生成和不完整知识补全的角度,探索了在不同限制条件下,如何利用知识图谱提升LLMs的推理能力。LightPROF通过引入知识适配器,将KG的结构信息有效地整合到LLM的输入中,提升了推理的效率和准确性。Generate-on-Graph则通过创新的“思考-搜索-生成”框架,使LLM能够在不完整的KG中补全缺失的信息,增强了问答系统的鲁棒性。这些研究成果为在资源受限的环境下,构建高效、准确的智能问答系统提供了新的思路和方法。

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值