(个人)基于深度学习的中国传统特色图像的风格迁移创新实训第一周(1)

本次实训项目旨在利用深度学习实现水墨画和剪纸的风格迁移,通过卷积神经网络(CNN)解决传统风格迁移的局限。挑战包括处理水墨画的留白和剪纸的线性纹理及边缘信息。目前,我正在研究如何分层处理图像以适应水墨画风格,并构建训练集以学习剪纸风格。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    本次创新实训,我们的项目是基于深度学习的中国传统特色图像的风格迁移。

    项目目标:

  • 实现水墨画和剪纸等中国传统艺术形式的风格迁移算法。

  • 完成一个可供用户操作的系统,包括上传图片、压缩、预处理、风格迁移等模块。

    首先介绍一下风格迁移:每一幅画都有自己的风格,而用户又想将自己的东西变成与名画相同的风格,这就叫做风格迁移。以往的风格迁移是分析某一种风格的图像,给那一种风格建立一个数学或者统计模型,再改变要做迁移的图像让它能更好的符合建立的模型。采用这种方法,每个程序只能实现某一种风格或者某一个场景。因此这种传统的风格迁移的实际应用很有限。2015年德国人Gatys提出了基于卷积神经网络的图像风格迁移。利用神经网络,可以实现更多的图像风格迁移。

    基于此我们提出了中国传统特色图像的风格迁移。主要难点有以下方面:

  • 水墨画存在大量的留白空间。
  • 剪纸的纹理特征是线性的,无法直接通过神经网络学习出来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值