(个人)基于深度学习的中国传统特色图像的风格迁移第一周(1)

本文探讨了基于CNN的图像风格迁移技术,尤其是针对中国传统艺术风格,如水墨画和剪纸的挑战。目前实现了油画风格迁移,创新点在于尝试水墨画和剪纸风格。介绍了Gatys在CVPR 2016上的文章,该文章提出使用CNN捕捉高层抽象特征,通过内容损失函数和风格损失函数结合,实现风格迁移。实验中,通过初始化噪声图像并优化其内容和风格损失,以达到目标风格效果。
摘要由CSDN通过智能技术生成

  本次创新实训的目标是创建一个实现图像风格迁移的网站,现在已经实现的有基于CNN的油画风格的迁移,我们的创新点在于我们想要实现一些中国传统的风格,比如水墨画与剪纸,但这并不是改变输入这么简单的问题。实现水墨画风格迁移的难点在于,水墨画有大面积的留白,并不像油画那样色彩斑斓,纹理重复密集,对于现有的算法来说,这种水墨画可以提取的信息很少。剪纸也存在着这类问题,剪纸的镂空很大一部分是以线条的形式呈现的,而且这些线条具有整体统一性,单纯采用现有的提取色块的方法是无法产生具有整体联系的线条的。

  本周我所做的第一个工作是:研究了Gatys发表在CVPR 2016 上的文章Image

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值