(个人)基于深度学习的中国传统特色图像的风格迁移创新实训第三周(1)

本文介绍了使用Sobel算子进行边缘检测的算法实现过程,包括图像的高斯滤波、灰度转换、卷积操作,通过计算梯度确定边缘点,并以此应用于深度学习的中国传统特色图像风格迁移中。
摘要由CSDN通过智能技术生成

本周主要工作:

利用边缘检测算子的方法进行边缘检测。

算法实现:

基本原理:

      论文:一种改进的Sobel算子边缘检测方法

     在数学上,利用导数来表示改变的快慢。基于此就可以通过寻找图像的一阶导数的最大值和最小值来检测边界。通常将边界定位在梯度最大的方向。

    图像可以看做是二维离散函数,图像梯度就是这个二维离散函数的求导。函数f(x,y)在(x,y)处的梯度为一个向量:

                                                                       

     计算出来这个向量的大小:

      

通常为了提高效率,经常近似表示为:


梯度的方向∠:


在图像这种离散的函数,又可以使用差分来代替梯度。

Sobel算子:

这个算子包含了两组3*3的矩阵,分别是在图像的x 方向和 y方向,这两个卷积核和图像进行卷积,可以得到横向和纵向的亮度差的近似值。


Gx和Gy分别表示了横向和纵向边缘检测的图像。之后可以得到两个方向的公式:

Gx = (-1)*f(x-1, y-1) + 0*f(x,y-1) + 1*f(x+1,y-1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值