《矩阵理论与方法》矩阵的QR分解

本文介绍了矩阵的QR分解,包括预备知识如向量内积、正交矩阵和正定矩阵的概念,接着详细阐述了如何使用初等旋转矩阵和初等反射矩阵求解矩阵的QR分解,其中涉及正交矩阵和上三角矩阵的性质。此外,还提到了正定矩阵的判断方法和施密特正交化过程。
摘要由CSDN通过智能技术生成

预备知识

向量内积:设 V V V是实数域上的线性空间(关于线性空间的定义,这里不再赘述),若对于 V V V中任意两个向量 α \alpha α β \beta β,按照某个规则,恒有唯一的一个实数与之对应,用记号 ( α , β ) (\alpha,\beta) (α,β)表示,且满足:
(1)交换律: ( α , β ) (\alpha,\beta) (α,β)= ( β , α ) (\beta,\alpha) (β,α)
(2)齐次律: ( k α , β ) (k\alpha,\beta) (kα,β)=k ( α , β ) (\alpha,\beta) (α,β)
(3)分配率: ( α + β , γ ) (\alpha+\beta,\gamma) (α+β,γ)= ( α , γ ) + ( β , γ ) (\alpha,\gamma)+(\beta,\gamma) (α,γ)+(β,γ)
(4)正定性: ( α , α ) ≥ 0 (\alpha,\alpha)\geq0 (α,α)0,当且仅当 α = 0 \alpha=0 α=0 ( α , α ) = 0 (\alpha,\alpha)=0 (α,α)=0
这里, α \alpha α β \beta β γ \gamma γ V V V中任意向量, k k k是任意实数,则称 ( α , β ) (\alpha,\beta) (α,β)为向量 α \alpha α β \beta β的内积。在复数域内积的定义与之类似。

正交矩阵:设 A ∈ R n × n \mathtt{A}\in \mathtt{R}^{n\times n} ARn×n,如果满足 A A T = A T A = I n \mathtt{A}\mathtt{A}^T=\mathtt{A}^T\mathtt{A}=\mathtt{I}_n AAT=ATA=In,其中 I n \mathtt{I}_n In是单位矩阵,则称 A \mathtt{A} A为正交矩阵。

酉矩阵:设 A ∈ C n × n \mathtt{A}\in \mathtt{C}^{n\times n} ACn×n,如果满足 A A H = A H A = I n \mathtt{A}\mathtt{A}^H=\mathtt{A}^H\mathtt{A}=\mathtt{I}_n AAH=AHA=In,其中 I n \mathtt{I}_n In是单位矩阵, A H \mathtt{A}^H AH A \mathtt{A} A的共轭矩阵,则称 A \mathtt{A} A为酉矩阵。

正定矩阵:一个 n × n n \times n n×n的实对称矩阵 M \mathtt{M} M是正定的,当且仅当对所有非零实系数向量 z z z,都有 z T M z > 0 z^T\mathtt{M} z>0 zTMz>0。对于复数的情况,定义则为:一个 n × n n \times n n×n的埃尔米特矩阵 M \mathtt{M} M是正定的,当且仅当对所有非零复向量 z z z,都有 z H M z > 0 z^H\mathtt{M} z>0 zHMz>0。由于 M \mathtt{M} M是埃尔米特矩阵,经过计算可知,对于任意复向量 z z z z H M z z^H\mathtt{M} z zHMz必然是实数,从而可以与0进行比较。

实对称矩阵:设 A ∈ R n × n \mathtt{A}\in \mathtt{R}^{n\times n} ARn×n,若 A = A T \mathtt{A}=\mathtt{A}^T A=AT,则 A \mathtt{A} A为实对称矩阵。

一、矩阵的QR分解

定义1:如果实(复)矩阵 A \mathtt{A} A可分解成一个正交(酉)矩阵 Q \mathtt{Q} Q与一个实(复)的上三角矩阵 R \mathtt{R} R的乘积,即 A = Q R \mathtt{A}=\mathtt{Q}\mathtt{R} A=QR则称上式为矩阵 A \mathtt{A} A的一个 Q R \mathtt{Q}\mathtt{R} QR分解。

定理1:设方阵 A = [ a i j ] n × n ∈ R n × n ( C n × n ) \mathtt{A}=[a_{ij}]_{n \times n}\in R^{n \times n}(C^{n \times n}) A=[aij]n×nRn×n(Cn×n)非奇异,则存在正交(酉)矩阵 Q \mathtt{Q} Q和实(复)的正线(对角元全为正数)上三角矩阵 R \mathtt{R} R,使得 A = Q R \mathtt{A}=\mathtt{Q}\mathtt{R} A=QR

推论1:设 n × r n \times r n×r矩阵 A = ∈ R n × r ( C n × r ) \mathtt{A}=\in R^{n \times r}(C^{n \times r}) A=Rn×r(Cn×r) r a n k A = r rank\mathtt{A}=r rankA=r,则存在 n n n阶正交(酉)矩阵和 r r r阶实(复)的正线上三角矩阵 R \mathtt{R} R,使得 A = Q [ R 0 ] \mathtt{A}=\mathtt{Q}\begin{bmatrix} \mathtt{R}\\ 0\\ \end{bmatrix} A=Q[R0]

推论2:设 A \mathtt{A} A是一个实对称正定矩阵,则存在正线上三角矩阵 R \mathtt{R} R,使得 A = R T R \mathtt{A}=\mathtt{R}^T\mathtt{R} A=RTR

二、用初等旋转矩阵求矩阵的QR分解

如果不要求分解中的上三角矩阵 R \mathtt{R} R的对角元皆是正数,则用初等旋转矩阵求矩阵 A \mathtt{A} A Q R \mathtt{Q}\mathtt{R} QR分解是比较方便的。下面只介绍利用实的初等旋转矩阵求实矩阵 A \mathtt{A} A Q R \mathtt{Q}\mathtt{R} QR分解,利用复初等旋转矩阵求复矩阵的分解方法类似。

定义2:设实数 c c c, s s s满足 c 2 + s 2 = 1 c^2+s^2=1 c2+s2=1,则称 n n n阶方阵 T i j = [ 1 ⋱ 1 c ⋯ s 1 ⋮ ⋱ ⋮ 1 − s ⋯ c 1 ⋱ 1 ] i j i j \mathtt{T}_{ij}=\begin{bmatrix} 1&&&&&&&&&&\\ &\ddots&&&&&&&&&\\ &&1&&&&&&&&\\ &&&c&\cdots&&&s&&&\\ &&&&1&&&&&&\\ &&&\vdots&&\ddots&&\vdots&&&\\ &&&&&&1&&&&\\ &&&-s&&\cdots&&c&&&\\ &&&&&&&&1&&\\ &&&&&&&&&\ddots&\\ &&&&&&&&&&1\\ \end{bmatrix}\begin{matrix} &\\ &\\ i\\ &\\ &\\ &\\ &\\ j\\ &\\ &\\ \end{matrix}\\ \begin{matrix} &&i&&&&&&&&j& \end{matrix} Tij=11cs1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值