《矩阵理论与方法》lambda矩阵及Jordan标准形

本文介绍了λ-矩阵的定义、标准型、不变因子、初等因子以及Jordan标准形的概念,阐述了如何通过初等因子法和波尔曼法求解Jordan标准形,并强调了λ-矩阵在矩阵理论中的重要性。
摘要由CSDN通过智能技术生成

最近在学习《矩阵理论与方法》这一本书,以此笔记作为学习过程的记录。

一. λ \lambda λ-矩阵

定义1:设 λ \lambda λ是数域 F F F上的一个未定元, f ( λ ) f(\lambda) f(λ) g ( λ ) g(\lambda) g(λ) . . . ... ...,是 F F F λ \lambda λ的多项式。用未定元 λ \lambda λ的多项式为元素组成的矩阵
[ f 11 ( λ ) f 12 ( λ ) ⋯ f 1 n ( λ ) f 21 ( λ ) f 22 ( λ ) ⋯ f 2 n ( λ ) ⋮ ⋮ ⋱ ⋮ f m 1 ( λ ) f m 2 ( λ ) ⋯ f m n ( λ ) ] \begin{bmatrix} {f_{11}(\lambda)}&{f_{12}(\lambda)}&{\cdots}&{f_{1n}(\lambda)}\\ {f_{21}(\lambda)}&{f_{22}(\lambda)}&{\cdots}&{f_{2n}(\lambda)}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {f_{m1}(\lambda)}&{f_{m2}(\lambda)}&{\cdots}&{f_{mn}(\lambda)}\\ \end{bmatrix} f11(λ)f21(λ)fm1(λ)f12(λ)f22(λ)fm2(λ)f1n(λ)f2n(λ)fmn(λ)
称为 λ \lambda λ-矩阵,记作 ( f i j ( λ ) ) (f_{ij}(\lambda)) (fij(λ))。可用 A ( λ ) \mathtt {A}(\lambda) A(λ) B ( λ ) \mathtt {B}(\lambda) B(λ) C ( λ ) \mathtt {C}(\lambda) C(λ)等来表示 λ \lambda λ-矩阵。

例如,方阵A的特征矩阵 λ I − A \lambda\mathtt {I}-\mathtt {A} λIA 就是一个 λ \lambda λ-矩阵,数字矩阵当然也可看做 λ \lambda λ-矩阵的特例。

定义2 λ \lambda λ-矩阵A ( λ ) (\lambda) (λ)中不为零的子式的最高阶数 r r r称为A ( λ ) (\lambda) (λ)的秩,记作 r a n k A ( λ ) = r rank\mathtt {A}(\lambda)=r rankA(λ)=r,简写成 r [ A ( λ ) ] = r r[\mathtt {A}(\lambda)]=r r[A(λ)]=r。规定零矩阵的秩为零。

例如, r a n k = [ λ 1 0 λ ] = 2 , r a n k = [ λ λ − 1 0 0 ] = 1 rank=\begin{bmatrix} \lambda&1\\ 0&\lambda\\ \end{bmatrix}=2,rank=\begin{bmatrix} \lambda&\lambda-1\\ 0&0\\ \end{bmatrix}=1 rank=[λ01λ]=2rank=[λ0λ10]=1

定义3:对于 n n n λ \lambda λ-矩阵 A ( λ ) \mathtt {A}(\lambda) A(λ),若有 n n n λ \lambda λ-矩阵 B ( λ ) \mathtt {B}(\lambda) B(λ),使得
A ( λ ) B ( λ ) = B ( λ ) A ( λ ) = I n \mathtt {A}(\lambda)\mathtt {B}(\lambda)=\mathtt {B}(\lambda)\mathtt {A}(\lambda)=\mathtt {I}_{n} A(λ)B(λ)=B(λ)A(λ)=In
则称 A ( λ ) \mathtt {A}(\lambda) A(λ)为可逆的 λ \lambda λ-矩阵,并称 B ( λ ) \mathtt {B}(\lambda) B(λ) A ( λ ) \mathtt {A}(\lambda) A(λ)的逆矩阵。

定理1 n n n λ \lambda λ-矩阵 A ( λ ) \mathtt {A}(\lambda) A(λ)可逆的充分必要条件是 ∣ A ( λ ) ∣ = d |\mathtt {A}(\lambda)|=d A(λ)=d
其中, d d d是一个非零常数。

定义4:若 λ \lambda λ-矩阵 A ( λ ) \mathtt {A}(\lambda) A(λ)经过有限次数的初等变换,可以化成 B ( λ ) \mathtt {B}(\lambda) B(λ),则称 B ( λ ) \mathtt {B}(\lambda) B(λ) A ( λ ) \mathtt {A}(\lambda) A(λ)等价,记作 A ( λ ) ≌ B ( λ ) \mathtt {A}(\lambda)≌\mathtt {B}(\lambda) A(λ)B(λ)

λ \lambda λ-矩阵的等价关系与数字矩阵一样,也满足自反性、对称性和传递性。

若两个 λ \lambda λ-矩阵等价,则它们的秩必定相等。

二. λ \lambda λ-矩阵的标准型

定义5:对角形 λ \lambda λ-矩阵
D ( λ ) = [ d 1 ( λ ) d 2 ( λ ) ⋱ d 3 ( λ ) 0 ⋱ 0 ] \mathtt {D}(\lambda)=\begin{bmatrix} {d_{1}(\lambda)}&{}&{}&{}\\ {}&{d_{2}(\lambda)}&{}&{}\\ {}&{}&{\ddots}&{}\\ {}&{}&{}&{d_{3}(\lambda)}\\ {}&{}&{}&{}&{0}\\ {}&{}&{}&{}&{}&{\ddots}\\ {}&{}&{}&{}{}&{}&{}&{0}\\ \end{bmatrix} D(λ)=d1(λ)d2(λ)d3(λ)00

  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值