洛谷 火柴排队(数组离散化+数组映射+逆序数)

该博客介绍了如何解决NOIP2013提高组的火柴排队问题。通过分析得出要使平方差之和最小,需最大化数字乘积。采用离散化和归并排序的方法,计算数组的逆序对数以求解答案。代码中展示了具体实现,包括数据读入、离散化、映射和逆序对计算过程。
摘要由CSDN通过智能技术生成

题目链接:

[NOIP2013 提高组] 火柴排队 - 洛谷

思路:

题目要求的是\sum(ai - bi)^2的最小值,由于\sumai^2 + \sumbi^2是不变的,不同组合只会带来\sum(-2ai*bi)的不同,也就是说我们要找出让\sum(ai*bi)最大的方案,容易知道,小的数字和小的数字组合起来会让乘积加起来最大化(证明略)

所以,考虑将两个数组的数字离散化,然后做数组映射。再求第二个数组的逆序对数的和,就是答案。

代码:

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5+5;
const int mod = 1e8-3;
int n;
struct node{int x,id;} a1[maxn], b1[maxn]; //node{离散前数值,下标}
int a2[maxn], b2[maxn]; //离散后的数组
bool cmp(const node&a, const node&b){return a.x<b.x;}
int mp[maxn]; //从a2到b2进行映射的数组
long long sum = 0; //逆序数
int tmp[maxn]; //临时数组

void merge(int left, int right){ //归并排序,顺便求逆序数
	if(left >= right) return;
	int mid = left + (right-left)/2;
	merge(left,mid); merge(mid+1, right);
	int i = left, j = mid+1, t = left;
	while(i<=mid && j<=right){
		if(b2[i] <= b2[j]) tmp[t++] = b2[i++];
		else {sum += mid-i+1; sum%=mod; tmp[t++] = b2[j++];}
	}
	while(i<=mid) tmp[t++] = b2[i++];
	while(j<=right) tmp[t++] = b2[j++];
	for(int k=left; k<=right; k++) b2[k] = tmp[k];
}
void read(){ //读入数据,并且进行离散化
	cin>>n;
	for(int i=1; i<=n; i++){cin>>a1[i].x; a1[i].id=i;}
	for(int i=1; i<=n; i++){cin>>b1[i].x; b1[i].id=i;}
	sort(a1+1,a1+n+1,cmp);
	sort(b1+1,b1+n+1,cmp);
	for(int i=1; i<=n; i++){a2[a1[i].id]=i;}
	for(int i=1; i<=n; i++){b2[b1[i].id]=i;}
}
int main(){
	ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
	read();
	for(int i=1; i<=n; i++)
		mp[a2[i]] = i; //反向记录映射
	for(int i=1; i<=n; i++)
		b2[i] = mp[b2[i]]; //把b2中数字进行映射
	merge(1,n); //1~n范围内进行归并排序求逆序对
	cout << sum;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值