fail树(失配树)

本文详细介绍了KMP算法中的重要概念——Border,并基于此引出Fail树的概念及其应用。通过实例展示了如何构建Fail树并利用它解决字符串匹配问题,如求解字符串前缀的公共最长Border长度等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

fail树是由KMP算法引申出来的概念,在解释fail树之前,首先要讲一个概念:Border。

Border的定义和性质

  1. 定义:对于字符串S,用|S|表示其长度。那么S串的一个Border就是S的某个前缀(S串本身不算),这个前缀能和后缀匹配。举个例子,abcdabc的一个Border是abc。一个字符串的Border可能有多个。
  2. 性质1:对于任意一个字符串S,一个Border的长度就对应一个Border(比如abcdabc的长度为3的Border当然就只能是abc)。并且,假设S长度记为n,则S的所有Border的长度分别为:ne[n], ne[ne[n]], ne[ne[ne[n]]].......直到值为0的不算。并且这个序列的值从左往右递减(根据kmp的性质容易得出)
  3. 性质2:根据上面的结论,我们可以知道,对一个字符串S求解next数组之后,我们就知道了S所有前缀(包括S自身)的所有Border了。

接下来就可以讲fail树了,这里先不讲引入fail树的原因,先说fail树是个啥。 

Fail树

  1. fail树是由所有 ne[i] -> i 的单向边构成的树,也就是说,这棵树的结构是底部指向顶部,最终汇聚到root点。
  2. 性质:结合前面Border的结论,在fail树上,一个结点x不断向上寻找祖先的过程,就是遍历字符串S[1,x]的所有Border长度的过程,又因为Border的长度和Border一一对应,所以fail树上就记录着字符串S所有前缀的Border。

 根据前面所说,我们就能推出以下结论,S的两个前缀S[1,p]和S[1,q]的公共最长Border长度,就是lca(ne[p], ne[q])。而这道模板题就是要用到这个基础结论:【模板】失配树 - 洛谷

代码如下:

#include <bits/stdc++.h>
using namespace std;
#define FOR(i, a, b) for (int i = (a); i <= (b); i++)
// #define int long long
#define pii pair<int,int>
const int N = 1e6+5, mod=1e9+7;
char s[N]; int n,m;
int ne[21][N], d[N];
int lg[N];

int lca(int x,int y){
	if(d[x] < d[y]) swap(x,y);
	while(d[x] > d[y]) x = ne[lg[d[x]-d[y]]][x];
	if(x==y) return y;
	for(int k=lg[d[x]]; k>=0; k--){
		if(ne[k][x] != ne[k][y]){x=ne[k][x]; y=ne[k][y];}
	}
	return ne[0][x];
}
void solve(){
	cin>>(s+1); n=strlen(s+1);
	//init of lg[]
	FOR(i,2,n) lg[i]=lg[i>>1]+1;
	//get_ne
	for(int i=2,j=0; i<=n; i++){
		while(j && s[i]!=s[j+1]) j=ne[0][j];
		if(s[i]==s[j+1]) j++;
		ne[0][i] = j, d[i]=d[j]+1; //记录next和深度d
	}
	//预处理倍增跳
	FOR(j,1,20) FOR(i,1,n)
		ne[j][i] = ne[j-1][ne[j-1][i]];
	//处理询问
	cin>>m;
	FOR(i,1,m){
		int x,y; cin>>x>>y;
		cout<<lca(ne[0][x], ne[0][y])<<'\n';
	}
}
signed main(){
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int T=1;
    while(T--) solve();
}

再补充一道fail树的应用题:[NOI2014] 动物园 - 洛谷 

大致题意是要求字符串S所有前缀 S[1,x]  (1\leq x\leq n)的长度不大于x/2的Border数量。

我们这样考虑问题:如果没有长度不大于x/2的要求,那就很简单,求一个点的祖先数量就行,很容易预处理。而加上这个条件之后,根据fail树数字大小的单调性(ne[x] < x),我们也能知道,符合条件的祖先是“上面的连续一段”。所以我们依然可以直接预处理每个点的祖先数量(其实就是深度),然后不断跳fail,直到找到第一个长度不大于x/2的,它的祖先数量就是当前的答案。

这个思路没错,但是复杂度不ok,因为暴力跳fail是O(n)的,再算上n次询问,总复杂度O(n^2),过不了。所以把暴力跳fail改成倍增跳,优化成O(nlogn)就能过了。

代码如下:

#include <bits/stdc++.h>
using namespace std;
#define FOR(i, a, b) for (int i = (a); i <= (b); i++)
// #define int long long
#define pii pair<int,int>
const int N = 1e6+5, mod=1e9+7;
char s[N]; int n;
int ne[21][N], num[N];

void solve(){
    //init
    memset(num,0,sizeof(num));
    num[1] = 1;
    //input
    cin>>(s+1); n=strlen(s+1);
    //get_ne
    for(int i=2,j=0; i<=n; i++){
        while(j && s[i]!=s[j+1]) j=ne[0][j];
        if(s[i]==s[j+1]) j++;
        ne[0][i] = j;
        num[i] = num[j]+1;
    }
	//预处理倍增跳
	FOR(j,1,20) FOR(i,1,n)
        ne[j][i] = ne[j-1][ne[j-1][i]];
    //跳fail到合适位置,取出答案
    long long ans = 1;
    FOR(i,1,n){
        int tt = ne[0][i];
		for(int j=20; j>=0; j--)
            if((ne[j][tt]<<1) > i) tt=ne[j][tt];
			// if((ne[tt][j]<<1) > i) tt=ne[tt][j];
		if((tt<<1) > i) tt = ne[0][tt];
        ans = (ans*(num[tt]+1))%mod;
    }
    cout<<ans<<'\n';
}
signed main(){
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int T=1; cin>>T;
    while(T--) solve();
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值