Daimayuan Online Judge #466. 摘桃子

本文介绍了如何通过前缀和和扫描线技巧,将区间摘桃子问题从O(n^2)优化到O(n),重点讲解了如何转化条件并利用长度限制来简化计算。通过实例代码展示了如何在DaimayuanOnlineJudge中的NamomoSpringCamp2022Div1第8题中应用这一方法。
摘要由CSDN通过智能技术生成

题目链接:摘桃子 - 题目 - Daimayuan Online Judge 

视频题解:【算法Camp】【每日一题】Namomo Spring Camp 2022 Div1 第8天题解(前缀和、扫描线)_哔哩哔哩_bilibili 

这题的思路非常巧妙:首先看到区间问题可以考虑前缀和,如果[ l, r ]区间满足题目,那么一个充要条件是:(sum[r]-sum[l-1])%k == r-l+1,其中sum表示a的前缀和。

这样的话,如果考虑暴力解决,需要枚举所有的l和r,复杂度是O(N^2),过不了。

考虑把原条件转化一下,变为:(sum[r]-r)%k == (sum[l-1]-(l-1))%k,且l-r+1<=k-1,特别注意这个长度的要求,如果不注意这个的话,会把非法答案也算进来。

由于要处理长度问题,考虑一位一位地遍历,当长度>=k的时候,立刻删掉最前面一个数的影响。

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define FOR(i, a, b) for (int i = (a); i <= (b); i++)
const int N = 2e5+5;
int n,k,a[N],sum[N],ans;
map<int,int> mp;

signed main() {
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
	cin>>n>>k; FOR(i,1,n) cin>>a[i], sum[i]=(sum[i-1]+(a[i]-1)+k)%k;

	mp[0]++; //初始化
	FOR(i,1,n){
		if(i>=k) mp[sum[i-k]]--; //长度限制最多为k-1,比k-1大(也就是>=k)的话必定不行。所以删去其影响
		ans+=mp[sum[i]];
		mp[sum[i]]++;
	}
	cout<<ans;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值