返回数组任意一个“局部最小”的位置

题目:来自脑客爱刷题

给定一个无序数组arr,已知在这个数组中任意相邻的元素都不相等,我们定义一下局部最小的概念:
如果arr长度为1,arr[0]是局部最小;
如果arr的长度大于1:
如果i=0,并且arr[i]<arr[i+1],那么arr[i]是局部最小;
如果i=arr.length-1,并且arr[i]<arr[i-1],那么arr[i]是局部最小;
如果0<i<arr.length-1,并且arr[i]<arr[i-1]同时还有arr[i]<arr[i+1],那么arr[i]是局部最小;
请写一个函数,只需返回arr中任意一个局部最小出现的位置即可。

int getLessNeighborIndex(const int *num, int len)
{
	if (num == nullptr || len <= 0)
		throw new std::exception("Invaalid parameters");
	if (len == 1)
		return num[0];
	if (num[0] < num[1])
		return 0;
	if (num[len - 1] < num[len - 2])
		return len - 1;
	int left = 1,right=len-2;
	while (left < right)
	{
		int mid = (left + right) / 2;
		if (mid+1<=right && num[mid]>num[mid + 1])
			left = mid + 1;
		else if (mid-1>=left && num[mid]>num[mid - 1])
			right = mid - 1;
		else
			return mid;
	}
	return left;
}


### 回答1: 一维非线性移动最小二乘法可以用来拟合非线性函数。假设有一组数据 $(x_i, y_i)$,要求出一个函数 $f(x)$,使得函数 $f(x)$ 在 $x_i$ 处的函数值 $f(x_i)$ 尽量接近 $y_i$。 一维非线性移动最小二乘法的基本思想是,选取一个窗口大小 $w$,在 $x_i$ 的邻域 $[x_i-w/2,x_i+w/2]$ 内选择若干个控制点,对这些控制点进行最小二乘拟合,得到一个局部拟合函数 $f_i(x)$。然后根据这些局部拟合函数,在 $x_i$ 处求函数值 $f(x_i)$,作为拟合函数的值。 以下是一维非线性移动最小二乘法的 C 语言实现: ```c #include <stdio.h> #include <math.h> #define MAXN 1000 // 数据点的最大数量 #define WINDOW_SIZE 5 // 窗口大小 // 非线性函数 f(x) = a * sin(b * x) + c * x double f(double x, double a, double b, double c) { return a * sin(b * x) + c * x; } int main() { int n; // 数据点数量 double x[MAXN], y[MAXN]; // 数据点坐标 double a, b, c; // 拟合函数参数 double y_fit[MAXN]; // 拟合函数在数据点处的值 int i, j, k; // 读入数据点 scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%lf%lf", &x[i], &y[i]); } // 对每个数据点进行拟合 for (i = 0; i < n; i++) { // 选取邻域内的数据点 int cnt = 0; double xx[WINDOW_SIZE], yy[WINDOW_SIZE]; for (j = 0; j < n; j++) { if (fabs(x[j] - x[i]) <= WINDOW_SIZE / 2) { xx[cnt] = x[j]; yy[cnt] = y[j]; cnt++; } } // 对选取的数据点进行最小二乘拟合 double x_mean = 0, y_mean = 0; double xy_cov = 0, x_var = 0; for (j = 0; j < cnt; j++) { x_mean += xx[j]; y_mean += yy[j]; } x_mean /= cnt; y_mean /= cnt; for (j = 0; j < cnt; j++) { xy_cov += (xx[j] - x_mean) * (yy[j] - y_mean); x_var += (xx[j] - x_mean) * (xx[j] - x_mean); } b = xy_cov / x_var; a = y_mean - b * x_mean; c = (yy[cnt-1] - yy[0]) / (xx[cnt-1] - xx[0]) - b * (xx[cnt-1] + xx[0]) / 2; // 计算拟合函数在数据点处的值 y_fit[i] = f(x[i], a, b, c); } // 输出拟合函数在所有数据点处的值 for (i = 0; i < n; i++) { printf("%lf\n", y_fit[i]); } return 0; } ``` 在上面的代码中,我们选择窗口大小为 5,对每个数据点进行拟合。拟合函数采用非线性函数 $f(x) = a \sin(b x) + c x$,其中 $a$、$b$、$c$ 是待求的参数。最小二乘拟合的过程可以参考这篇文章:[最小二乘法拟合直线](https://zhuanlan.zhihu.com/p/104601149)。 ### 回答2: 一维非线性移动最小二乘法是一种用于拟合非线性数据的方法。它可以通过一个给定的x值,求出对应的y值。在C语言中,可以通过以下步骤来实现这个算法: 1. 定义数据结构:首先,我们需要定义一个数据结构来存储x和y的值。可以使用一个结构体来表示,结构体中包含两个成员变量分别表示x和y的值。 ```c typedef struct { double x; double y; } DataPoint; ``` 2. 数据准备:接下来,我们需要准备一组已知的数据点,即已知的一些x和y的值。将数据点存储在一个数组中。 ```c DataPoint data[] = { {x1, y1}, {x2, y2}, {x3, y3}, ... }; ``` 3. 定义非线性函数:根据实际情况,定义一个非线性函数来描述x和y之间的关系。这个函数可以是任意的非线性函数。 ```c double nonlinearFunc(double x, double a, double b, double c, ...) { // 根据实际情况定义非线性函数 } ``` 4. 实现最小二乘法算法:最小二乘法的目标是找到最优参数,使得非线性函数与已知数据点之间的误差最小。具体实现如下: ```c double moveLeastSquare(double x) { double bestFitY = INFINITY; // 初始化最小误差 double bestFitA, bestFitB, bestFitC; // 最优参数 for(int i = 0; i < numDataPoints; i++) { double y = data[i].y; // 调用非线性函数,计算误差 double error = y - nonlinearFunc(x, a, b, c, ...); // 计算误差的平方 double squaredError = error * error; // 如果当前误差较小,则更新最小误差和最优参数 if(squaredError < bestFitY) { bestFitY = squaredError; bestFitA = a; bestFitB = b; bestFitC = c; // 更新最优参数 } } // 返回最优参数计算得到的y值 return nonlinearFunc(x, bestFitA, bestFitB, bestFitC, ...); } ``` 通过以上步骤,我们可以实现一维非线性移动最小二乘法,根据给定的x值求出对应的y值。可以根据实际情况调整非线性函数的形式,以及使用更多的数据点和参数来提高拟合精度。 ### 回答3: 一维非线性移动最小二乘法是一种求解由一组数据点构成的非线性函数的方法。在C语言中,可以通过以下步骤求解一个 x 对应的 y 值: 1. 定义一个表示数据点的结构体,包含 x 和 y 两个成员变量。 ```c struct data_point { double x; double y; }; ``` 2. 定义一个函数,该函数用于计算非线性函数的值。以一个简单的二次函数为例: ```c double nonlinear_function(double x, double a, double b, double c) { return a * x * x + b * x + c; } ``` 其中,a、b、c 是函数的参数,需要根据实际情况进行调整。 3. 定义一个函数,该函数用于实现一维非线性移动最小二乘法。该方法的基本步骤如下: a. 定义一个数组,用于存储数据点。 b. 初始化数组,将数据点添加到数组中。 c. 定义参数变量 a、b、c 的初始值。 d. 迭代优化,根据最小二乘法的原理,通过调整参数 a、b、c 来使得函数的拟合度更高。 e. 最终得到最优的参数值。 下面是一个简单的示例代码: ```c #include <stdio.h> #include <math.h> #define MAX_POINTS 10 struct data_point { double x; double y; }; double nonlinear_function(double x, double a, double b, double c) { return a * x * x + b * x + c; } void nonlinear_least_squares(struct data_point points[], int num_points, double *a, double *b, double *c) { // 初始化参数 *a = 1.0; *b = 1.0; *c = 1.0; // 迭代优化 for (int i = 0; i < num_points; i++) { double x = points[i].x; double y = points[i].y; double residual = nonlinear_function(x, *a, *b, *c) - y; // 最小二乘法更新参数 *a -= residual * pow(x, 2); *b -= residual * x; *c -= residual; } } int main() { struct data_point points[MAX_POINTS] = { {1.0, 2.0}, {2.0, 5.0}, {3.0, 10.0}, {4.0, 17.0}, {5.0, 26.0} // 可以根据实际情况添加更多的数据点 }; double a, b, c; // 求解最优参数 nonlinear_least_squares(points, 5, &a, &b, &c); double x = 6.0; double y = nonlinear_function(x, a, b, c); printf("Given x = %.2f, y = %.2f\n", x, y); return 0; } ``` 在上述示例代码中,首先初始化了一些数据点,然后使用 nonlienar_least_squares 函数进行参数求解。最后给定一个 x 值,通过 nonlinear_function 函数计算对应的 y 值,并输出结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值