【机器学习算法-python实现】逻辑回归的实现(LogicalRegression)

标签: 机器学习 python 逻辑回归
20846人阅读 评论(5) 收藏 举报
分类:

(转载请注明出处:http://blog.csdn.net/buptgshengod)

1.背景知识

      在刚刚结束的天猫大数据s1比赛中,逻辑回归是大家都普遍使用且效果不错的一种算法。
 

(1)回归     

     
    先来说说什么是回归,比如说我们有两类数据,各有50十个点组成,当我门把这些点画出来,会有一条线区分这两组数据,我们拟合出这个曲线(因为很有可能是非线性),就是回归。我们通过大量的数据找出这条线,并拟合出这条线的表达式,再有数据,我们就以这条线为区分来实现分类。下图是我画的一个数据集的两组数据,中间有一条区分两组数据的线。


   (2)sigmoid函数

         我们看到了上图中两组数据的划分,那么我们怎么来找出两组数据的边界表达式呢,这里用到sigmoid函数。它的形状大致是(如下),公式

把数据集的特征值设为x1,x2,x3......。我们要求出它们的回归系数。只要设z=w1*x1+w2*x2.....用sigmoid函数出理是防止数据从0到1发生跳变,因为目标函数是0到1,我们要把带入x1,x2...多项式数据控制在这之间。

 (3)梯度上升算法

   梯度上升是指找到函数增长的方向。公式。在具体实现的过程中,不停地迭代运算直到w的值几乎不再变化为止。

2.代码

   数据集在工程中有。

导入数据集,并定义sigmoid函数
def loadDataSet():
    dataMat = []; labelMat = []
    fr = open('/Users/hakuri/Desktop/testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

def sigmoid(inX):
    return 1.0/(1+exp(-inX))


返回回归系数,对应于每个特征值,for循环实现了递归梯度上升算法。
def gradAscent(dataMatIn, classLabels):
    dataMatrix = mat(dataMatIn)             #convert to NumPy matrix
    labelMat = mat(classLabels).transpose() #convert to NumPy matrix
    
    m,n = shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500
    weights = ones((n,1))
    
    for k in range(maxCycles):              #heavy on matrix operations
        h = sigmoid(dataMatrix*weights)     #matrix mult
        error = (labelMat - h)              #vector subtraction
        weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
    return weights


结果,返回了特征值的回归系数。我们的数据集有两个特征值分别是x1,x2。我们又增设了了x0变量。得到的结果

[[ 4.12414349]

 [ 0.48007329]

 [-0.6168482 ]]

我们得出x1和x2的关系(设x0=1),0=4.12414349+0.48007329*x1-0.6168482*x2


画出x1与x2的关系图



3.代码

 


作者微信公众号:凡人机器学习

长期分享机器学习实战相关信息,感谢关注!


查看评论

用Python开始机器学习(7:逻辑回归分类)

在本系列文章中提到过用Python开始机器学习(3:数据拟合与广义线性回归)中提到过回归算法。逻辑回归算法本质还是回归,只是其引入了逻辑函数来帮助其分类。实践发现,逻辑回归在文本分类领域表现的也很优秀...
  • lsldd
  • lsldd
  • 2014-11-27 22:12:01
  • 42656

Python实现逻辑回归(Logistic Regression in Python)

本文基于yhat上Logistic Regression in Python,作了中文翻译,并相应补充了一些内容。本文并不研究逻辑回归具体算法实现,而是使用了一些算法库,旨在帮助需要用Python来做...
  • zj360202
  • zj360202
  • 2017-12-01 16:29:47
  • 4116

逻辑回归原理(python代码实现)

Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数。 优点:计算代价不高,易于理解和实现。 缺点:...
  • csqazwsxedc
  • csqazwsxedc
  • 2017-04-08 20:43:39
  • 5491

逻辑回归----Python实现

逻辑回归是个二分类问题,具体原理网上有很多,这里只列出Python实现过程。 原理参考:逻辑回归 参考《机器学习实战》,对于逻辑回归参数寻优时,采用梯度下降法和随机梯度下降两种方法实现。 P...
  • sinat_34022298
  • sinat_34022298
  • 2017-08-08 20:42:01
  • 1767

Python手撸逻辑回归(logistic regression)

与线性回归用于预测连续值不同,逻辑归回用于分类,原理与线性回归类似,定义损失函数,然后最小化损失,得到参数既模型,只不过损失的定义不同。 逻辑回归的假设如图1所示,可以理解为线性回归外面套了一层si...
  • sun_shengyun
  • sun_shengyun
  • 2016-12-21 17:55:06
  • 1568

Python实现Logistic Regression(逻辑回归)

在Coursera以及网易云课堂学习了吴恩达老师的《深度学习》课程,自己动手编写了一下第二章的逻辑回归算法。 代码如下: import numpy as np class LogisticRe...
  • u012343179
  • u012343179
  • 2017-09-07 20:27:43
  • 397

python/逻辑回归

正则化方法,防止过拟合,提高泛化能力在机器学习算法中,常常将原始数据集分为三部分:training data、validation data 、testing data。 其中validation ...
  • ae5555
  • ae5555
  • 2015-12-25 14:13:10
  • 662

Python机器学习之Logistic回归

大数据时代,数据犹如一座巨大的金矿,等待我们去发掘。而机器学习和数据挖掘的相关技术,无疑就是你挖矿探宝的必备利器!工欲善其事,必先利其器。很多初涉该领域的人,最先困惑的一个问题就是,我该选择哪种“工具...
  • baimafujinji
  • baimafujinji
  • 2016-04-14 17:11:38
  • 10647

Python实现逻辑回归

Python实现逻辑回归
  • u013790563
  • u013790563
  • 2016-03-19 21:13:49
  • 2217

Python逻辑回归

介绍 回归分析是确定预测属性(数值型)与其他变量间相互依赖的定量关系最常用的统计学方法。 逻辑回归是概率型非线性回归,有2分类和多分类。2分类就是y的取值为0,1 即是 或 否 。...
  • xuyaoqiaoyaoge
  • xuyaoqiaoyaoge
  • 2016-11-20 21:43:00
  • 2225
    统计

    主要讲述算法和业务的结合,适合初学者

    机器学习实践应用

    京东地址

    作者公众号:凡人机器学习

    凡人机器学习

    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 89万+
    积分: 1万+
    排名: 1617
    博客专栏