最大连续子序列和

问题描述

给定一个整数序列, a 0 , a 1 , a 2 , . . . , a n a_0, a_1, a_2, ... , a_n a0,a1,a2,...,an(可正可负),求其中最大的子序列和。如果所有整数都是负数,那么最大子序列和为0;

用数学语言描述, 就是:
m a x ( 0 , ∑ i j a i ) ,   0 ≤ i ≤ j ≤ n max(0, \sum\limits_{i}^{j}a_i), \space 0 \le i \le j \le n max(0,ijai), 0ijn

穷举法

根据上述式子, 我们可以枚举上下界 i i i j j j, 然后在给定 i i i j j j时, 求出此区间的和。
这样可以枚举所有的和, 再找出最大值。
这种算法时间复杂度为 O ( n 3 ) O(n^{3}) O(n3).

int maxSubSequence1(int arr[], int size) {
    if (size <= 0) {
        return 0;
    }

    int i, j, k;
    int currSum = 0, maxSum = 0;

    for (i = 0; i < size; i++) { // 起点
        for (j = i; j < size; j++) { // 终点
            currSum = 0;
            for (k = i; k <= j; k++) { // 求出给定区间i, j的和
                currSum += arr[k];
            }

            if (currSum > maxSum) {
                maxSum = currSum;
            }
        }
    }

    return maxSum;
}

优化的穷举法

上述代码最内层的for有点多余, 因为它在每次改变“终点” j j j时, 都把currSum重置为0了, 其实我们可以利用之前的结果, 比如:
已知第1个到第5个的和为sum1, 那么第1个到第6个的和就可以用sum1再加上第6个元素。
这样的话, 就剩下两层for循环了, 时间复杂度为 O ( n 2 ) O(n^{2}) O(n2).
也就是:

int maxSubSequence2(int arr[], int size) {
    if (size <= 0) {
        return 0;
    }

    int i, j, k;
    int currSum = 0, maxSum = 0;

    for (i = 0; i < size; i++) { // 起点
        currSum = 0; // 起点更新时, 重置currSum
        for (j = i; j < size; j++) { // 终点
            currSum += arr[j]; // 终点改变, 在前一次的基础上加

            if (currSum > maxSum) {
                maxSum = currSum;
            }
        }
    }
    return maxSum;
}

看到 O ( n 2 ) O(n^{2}) O(n2)的算法, 我们不免要想,能不能变成 O ( n log ⁡ n ) O(n\log n) O(nlogn)呢? 答案是可以的。
这里可以采用分治的思想, 对一个给定的整数序列, 将其从中间一分为二,
最大连续子序列和-分治
此时最大连续子序列和的存在有有3种情况:

  • 在左半序列
  • 在右半序列
  • 所求序列刚好横跨中点,即左右序列各占一部分。

前两种情况和原问题一样, 不过规模变小了, 可递归解决。
对最后一种, 可以求出以中点为起点向左的最大连续序列和、以中点为起点向右的最大连续序列和,这两个结果的和就是第三种情况的答案。
此时算法的复杂度为 O ( n log ⁡ n ) O(n\log n) O(nlogn).

static int divide(int arr[], int left, int right) {
    if (left == right) { // 只有一个元素时
        return arr[left] > 0 ? arr[left] : 0;
    }

    int mid = (left + right) >> 1;
    int lMaxSum = divide(arr, 0, mid); // 左边部分最大和
    int rMaxSum = divide(arr, mid + 1, right); // 右边部分最大和

    // 中间部分求解
    int currSum = 0, lTmpMax = arr[mid], rTmpMax = arr[mid + 1];
    int i;
    for (i = mid; i >= left; i--) {
        currSum += arr[i];
        if (currSum > lTmpMax) {
            lTmpMax = currSum;
        }
    }

    currSum = 0;
    for (i = mid + 1; i <= right; i++) {
        currSum += arr[i];
        if (currSum > rTmpMax) {
            rTmpMax = currSum;
        }
    }

    // 第三种情况的答案
    int maxSum = lTmpMax + rTmpMax;

    // 三个和 求最大
    if (lMaxSum > maxSum) {
        maxSum = lMaxSum;
    }
    if (rMaxSum > maxSum) {
        maxSum = rMaxSum;
    }

    return maxSum;
}

int maxSubSequence3(int arr[], int size) {
    if (size <= 0) {
        return 0;
    }
    return divide(arr, 0, size - 1);
}

上述的maxSubSequence3, 为了让它和前两种参数形式保持一致, 引入了中间函数divide.

“扫描法”

姑且叫它扫描法吧。
首先说这样一个事实,

  • 要求的子序列必然是以正数开头的,因为如果以负数开头,那么去掉开头的负数,会得到一个更优解。
  • 如果我们已经对中间一部分序列 求得和为sum<0, 那么这部分不会是最终结果的一部分, 因为去掉它之后, 会得到一个更优解。
int maxSubSequence4(int arr[], int size) {
    if (size <= 0) {
        return 0;
    }
    int i = 0, currSum = 0, maxSum = 0;
    for (; i < size; i++) {
        currSum += arr[i];

        // 如果当前和大于maxSum, 则更新maxSum
        if (currSum > maxSum) {
            maxSum = currSum;
        }

        // 如果currSum<0, 则重置currSum, 即抛弃currSum对应的那些元素
        else if (currSum < 0) {
            currSum = 0;
        }
    }

    return maxSum;
}

测试程序如下:

int main(int argc, char const *argv[])
{
    int arr[] = {1, 2, 3, 4, -4, 5, -5, 6, -20};
    int size = sizeof(arr) / sizeof(int);

    printf("%d\n", maxSubSequence1(arr, size));
    printf("%d\n", maxSubSequence2(arr, size));
    printf("%d\n", maxSubSequence3(arr, size));
    printf("%d\n", maxSubSequence4(arr, size));
    return 0;
}

参考:
http://www.cnblogs.com/conw/p/5896155.html

欢迎补充指正!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值