即给定一个大小为n,元素为整数的数组S,以及另外一个整数x,用一个算法来确定:是否可以在S中找到两个整数,使得它们的和是x。要求该算法的时间复杂度为nlgn。
比较容易想到的方法是:先求出S中任意两个整数相加所得到的和的集合Sum,然后从Sum中搜索x,如果能找到,那么就可以确定S中有两个整数的和是x。
但是这种方法的时间复杂度是n2。因为求出S中任意两个整数的和需要n2的时间(假定数组S的下标从1开始):
第一步,依次求出S[2…n]和S[1]相加的和;时间复杂度是n-1
第二部,依次求出S[3…n]和S[2]相加的和;时间复杂度是n-2
……
最后,求出S[n-1]和S[n]相加的和;时间复杂度是1
所以总的时间复杂度是(n-1)+(n-2)+……+1,是n2阶的。
所以需要换一个思路。目前我想到的一个方法是:
第一步,用x依次减去S中的各个元素,得到一个集合R[1…n];时间复杂度是n
第二步,将S排序,比如可以使用merge-sort(或者任何等价的方法),使排序的时间复杂度为nlgn;
第三步,在排好序的S中,依次用二分法搜索R中的每一个元素;如果能够找到,就说明x可以表示为S中两个元素的和;这一步的时间复杂度是lgn×n,即nlgn;
所以总的时间复杂度是n+nlgn+nlgn,即nlgn。