Chapter 2, Exercise 2.3-7


即给定一个大小为n,元素为整数的数组S,以及另外一个整数x,用一个算法来确定:是否可以在S中找到两个整数,使得它们的和是x。要求该算法的时间复杂度为nlgn。

 

比较容易想到的方法是:先求出S中任意两个整数相加所得到的和的集合Sum,然后从Sum中搜索x,如果能找到,那么就可以确定S中有两个整数的和是x。

 

但是这种方法的时间复杂度是n2。因为求出S中任意两个整数的和需要n2的时间(假定数组S的下标从1开始):

第一步,依次求出S[2…n]和S[1]相加的和;时间复杂度是n-1

第二部,依次求出S[3…n]和S[2]相加的和;时间复杂度是n-2

……

最后,求出S[n-1]和S[n]相加的和;时间复杂度是1

所以总的时间复杂度是(n-1)+(n-2)+……+1,是n2阶的。

 

所以需要换一个思路。目前我想到的一个方法是:

第一步,用x依次减去S中的各个元素,得到一个集合R[1…n];时间复杂度是n

第二步,将S排序,比如可以使用merge-sort(或者任何等价的方法),使排序的时间复杂度为nlgn;

第三步,在排好序的S中,依次用二分法搜索R中的每一个元素;如果能够找到,就说明x可以表示为S中两个元素的和;这一步的时间复杂度是lgn×n,即nlgn;

所以总的时间复杂度是n+nlgn+nlgn,即nlgn。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值