RMQ

文章介绍了如何使用区间最小值查询(RMQ)算法解决给定数组的问题,包括两种主要方法:ST表预处理和分块优化。还提及了FourRussian算法和针对特定序列结构的加1减1RMQ优化,展示了如何在不同复杂度下高效求解区间最小值。
摘要由CSDN通过智能技术生成

问题描述

  给定一个长度为 n 的数列 a。
  随后有 q 次询问,每次询问给定一个区间,请回答区间的最小值。

输入格式

  第一行一个正整数n,表示数列长度。
  第二行n个非负整数,表示数列a。
  第三行一个正整数q,表示询问数量。
  随后q行,每行两个正整数x、y,表示询问区间。

输出格式

     共q行,每行一个整数,表示区间的最小值。

输出格式

5
2 1 3 5 4
3
1 1
1 3
3 5

样例输出 

2
1
3

数据规模和约定

  n, q <= 100000,a数组元素 <= 10^{9} 

RMQ

RMQ 是什么:

RMQ 表示区间最大/小值。

在接下来的描述中,默认初始数组大小为 n,询问次数为 m。 

CODE:

1.ST表 O(m log m)~O(log n)

1.预处理
st[i][0]=a[i];
for(int j=1;j<=log2(n);j++){
    int len=(1<<j);
    for(int i=1;i+len-1<=n;i++){
        st[i][j]=min(st[i][j-1],st[i+len/2][j-1]);
    }
}
2.求值
int x=log2(r-l+1);
int len=(1<<x);
int ans=min(st[l][x],st[r-len+1][x]);
3.最终代码
#include <bits/stdc++.h>
using namespace std;
int n,m,t,a[100010],st[100010][20],l,r;
int main(){
    cin>>n;
    for(int i=1;i<=n;i++){
        cin>>a[i];
        st[i][0]=a[i];
    }
    m=log2(n);
    for(int j=1;j<=m;j++){
        int len=(1<<j);
        for(int i=1;i+len-1<=n;i++){
            st[i][j]=min(st[i][j-1],st[i+len/2][j-1]);
        }
    }
    cin>>t;
    for(int i=1;i<=t;i++){
        cin>>l>>r;
        int x=log2(r-l+1);
        int len=(1<<x);
        int ans=min(st[l][x],st[r-len+1][x]);
        cout<<ans<<endl;
    }
    return 0;
}

 2.分块 O(\frac{n}{q}+2*q)

#include<bits/stdc++.h>
using namespace std;
int n,a[100010],t[100010],l,r,x=100;
int main(){
    int i,j;
    cin>>n;
    for(i=1;i<=n;i++){
        cin>>a[i];
    }
    int nt=n/x;
    for(i=0;i<nt;i++){
        int s=a[i*x];
        for(j=i*x;j<i*x+x;j++){
            if(a[j]<s){
                s=a[j];
            }
        }
        t[i]=s;
    }
    int q;
    cin>>q;
    for(i=1;i<=q;i++){
        int l,r,s;
        cin>>l>>r;
        s=a[l];
        if(r-l<=x){
            for(j=l;j<=r;j++){
                if(a[j]<s){
                    s=a[j];
                }
            }
        }
        else{
            int ee=l/x*x+x;
            for(j=l;j<ee;j++){
                if(a[j]<s){
                    s=a[j];
                }
            }
            for(j=l/x+1;j<r/x;j++){
                if(t[j]<s){
                    s=t[j];
                }
            }
            for(j=r/x*x;j<=r;j++){
                if(a[j]<s){
                    s=a[j];
                }
            }
        }
        cout<<s<<endl;
    }
    return 0;
}

注意:以下为进阶算法,需要较高基础

Four Russian

这个算法不太出名。

Four russian 是一个由四位俄罗斯籍的计算机科学家提出来的基于 ST 表的算法。

改进:序列分块。

具体来说,我们将原数组——我们将其称之为数组 A——每 S 个分成一块,总共 n/S 块。

对于每一块我们预处理出来块内元素的最小值,建立一个长度为 n/S 的 ST 表数组 B。

同时,我们对于数组 A 的每一个零散块也建立一个 ST 表。

询问的时候,我们可以将询问区间划分为不超过 1 个数组 B 上的连续块区间和不超过 2 个数组 A 上的整块内的连续区间。显然这些问题我们通过 ST 表上的区间查询解决。

在 S=log⁡ n 时候,预处理复杂度达到最优,为 O(n log ⁡log⁡ n)。

时间复杂度 O(n log ⁡log⁡ n)∼O(1)

空间复杂度 O(n log ⁡log⁡ n)

注意:常数较大。

一些小的的算法改进

在询问的两个端点在数组 A 中属于不同的块的时候,数组 A 中块内的询问是关于每一块前缀或者后缀的询问。

显然这些询问可以通过预处理答案在 O(n) 的时间复杂度内被解决。这样子我们只需要在询问的时候进行至多一次 ST 表上的查询操作了。

一些玄学的算法改进

我们将块大小设为 \sqrt{n},然后预处理出每一块内前缀和后缀的 RMQ,再暴力预处理出任意连续的整块之间的 RMQ,时间复杂度为 O(n)。

查询时,对于左右端点不在同一块内的询问,我们可以直接 O(1) 得到左端点所在块的后缀 RMQ,左端点和右端点之间的连续整块 RMQ,和右端点所在块的前缀 RMQ,答案即为三者之间的最值。

而对于左右端点在同一块内的询问,我们可以暴力求出两点之间的 RMQ,时间复杂度为 O(\sqrt{n}),但是单个询问的左右端点在同一块内的期望为 O(\frac{\sqrt{n}}{n}),所以这种方法的时间复杂度为期望 O(n)。

由于善(du)良(liu)的CCF不卡常了,因为我们可以通过在 \sqrt{n} 的基础上随机微调块大小,很大程度上避免算法在根据特定块大小构造的数据中出现最坏情况。

非常好用!!!

加 1 减 1 RMQ

若序列满足相邻两元素相差为 1,可以做到 O(n)∼O(1) 的时间复杂度,O(n) 的空间复杂度。

重点在于块内 RMQ 问题的优化。

由于相邻两个数字的差值为 ±1,所以在固定左端点数字时 长度不超过 log⁡ n 的右侧序列种类数为 \sum \binom{logn}{i=1}2^{i-1}<=n。

由于 \sum \binom{logn}{i=1}2^{i-1}≤n 这我们可以预处理所有不超过 log n 种情况的最小值 − 第一个元素 的值。

在预处理的时候我们需要去预处理同一块内相邻两个数字之间的差,转换成二进制。在询问的时候我们找到询问区间对应的二进制表示进行查询,来得出答案。

预处理的时间复杂度就被优化到了 O(n)。

 

  • 36
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值