多维张量

参照网页: 张量(tensor)是什么?

                   多维张量的几何理解

                  TensorFlow:使用tf.reshape函数重塑张量

                   tensorflow笔记:tf.reshape的详细讲解

整理

1.什么是张量(tensor)

深度学习框架中的一个核心组件,后续的所有运算和优化算法几乎都是基于张量进行的。

理解张量,先从最简单的标量开始。

标量(scalar):一个标量就是一个单独的数,一般用小写的的变量名称表示,可以把标量看成零维数组。

向量(vector):又叫矢量,既有大小,又有方向,可以把向量看成一维数组。

矩阵(matrix):是一个二维数组。拆开来看,矩阵是一组行向量,或一组列向量的组合,向量里每个元素右是标量的组合。

张量(tensor):简单理解张量,就是向量和矩阵的扩展。

通俗一点理解的话,我们可以将标量视为零阶张量,向量视为一阶张量,那么矩阵就是二阶张量。

三阶张量就是一个三维数组,比如用一个三维数组表示图片,第一维是长度,第二维是宽度,第三维是颜色。

还可以增加一个维度,比如编号,这样就成了四维数组,就可以说是一个四阶张量。

简单理解张量,它就是一个大于等于3维的数组。

2.如何理解多维张量

0、零维张量

import tensorflow as tf

#零维张量
const0 = tf.constant(1, tf.float16)
print(const0)

运行结果:

Tensor("Const:0", shape=(), dtype=float16)

1、一维张量

#一维张量,长度为4
const1 = tf.constant([1, 2, 3, 4], tf.float16)
print(const1)

运行结果:

Tensor("Const_1:0", shape=(4,), dtype=float16)

几何表示:


一维张量没有行和列的概念,只有长度的概念。

上述的const1就是长度为4的一维张量,或者称为向量。
上面的图仅为示意,代表一维张量只有axis=0这个方向,并不是指这是一个4行的向量。

事实上,tensorflow在做一些运算时,反而经常把1行N列的二维张量简化成一个长度为N的一维向量。

2、二维张量

 

#二维张量,3行4列
const2 = tf.constant([
                     [1, 2, 3, 4],
                     [5, 6, 7, 8],
                     [9, 10, 11, 12]
                     ], tf.float16)
print(const2)

运行结果:

Tensor("Const_2:0", shape=(3, 4), dtype=float16)

几何表示:

3、三维张量

#三维张量,3行4列深度为2的张量
const3 = tf.constant([
                     [[ 1,  2], [ 3,  4], [ 5,  6], [ 7,  8]],
                     [[11, 12], [13, 14], [15, 16], [17, 18]],
                     [[21, 22], [23, 24], [25, 26], [27, 28]]
                     ], tf.float16)
print(const3)

运行结果:

Tensor("Const_3:0", shape=(3, 4, 2), dtype=float16)

几何表示:

 

4、四维张量(图像仅用于理解,坐标系axis已经不再适用)

#四维张量
const4 = tf.constant([
                     #第一个3行4列深度为2的三维张量
                     [[[1,  2], [ 3,  4], [ 5,  6], [ 7,  8]],
                     [[11, 12], [13, 14], [15, 16], [17, 18]],
                     [[21, 22], [23, 24], [25, 26], [27, 28]]
                     ],
                     #第二个3行4列深度为2的三维张量
                     [[[1,  2], [ 3,  4], [ 5,  6], [ 7,  8]],
                     [[11, 12], [13, 14], [15, 16], [17, 18]],
                     [[21, 22], [23, 24], [25, 26], [27, 28]]]
                     ], tf.float16)
print(const4)

运行结果:

Tensor("Const_4:0", shape=(2, 3, 4, 2), dtype=float16)

几何表示:

这个图上的axis不对,行应为axis=1,以此类推

如何判断一个张量的batch数、行、列、深度:

const4 = tf.constant([
                     #第一个3行4列深度为2的三维张量
                     [[[1,  2], [ 3,  4], [ 5,  6], [ 7,  8]],
                     [[11, 12], [13, 14], [15, 16], [17, 18]],
                     [[21, 22], [23, 24], [25, 26], [27, 28]]
                     ],
                     #第二个3行4列深度为2的三维张量
                     [[[1,  2], [ 3,  4], [ 5,  6], [ 7,  8]],
                     [[11, 12], [13, 14], [15, 16], [17, 18]],
                     [[21, 22], [23, 24], [25, 26], [27, 28]]]
                     ], tf.float16)

从左边开始数连续[的数量,最多有X个[说明是X维张量。上面的例子就是4维张量。
以三维以上的张量为例:
从左边开始数连续的[,最后一个[对应的]中一共两个元素,分别为1, 2,说明深度为2。
接下来向左边数上一级[对应的]中一共有4个元素[1, 2], [ 3, 4], [ 5, 6], [ 7, 8],说明列为4。
同理继续数上一级,得到3行,2个batch。

shape属性中的元素大于等于3时,可以用3维空间来理解。
shape=(3, 4, 2)时,表示3行4列深度为2的张量
shape=(2, 3, 4, 2)时,表示有2个 3行4列深度为2的张量
shape=(6, 2, 3, 4, 2)时,表示有6个四维张量,这个四维张量又可以表示为2个 3行4列深度为2的张量。

shape中的属性分别与axis=0axis=1axis=2axis=3……对应,以此类推。

当维度超过3时,上图几何中的坐标系表示就已经错误了。但是对于理解多维是有帮助的。

3.张量如何reshape

将张量reshape为深度为2的

import tensorflow as tf
t=[1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8]
with tf.Session() as sess:
	print (sess.run(tf.reshape(t,[1,3,-1,2])))

结果:与第2部分讲解预期一样,按照数据顺序进行reshape

[[[[1 2]
   [3 4]
   [5 6]]

  [[7 8]
   [9 0]
   [1 2]]

  [[3 4]
   [5 6]
   [7 8]]]]

四维数组的理解,(batch_size,height,width,channel)四维图像可以看成多张图片。

 

在维度上,我们可以这样理解,进行记忆   三维和四维分别如下

在tensorflow中,有argmax argmin等函数可以用到axis  。在增加删除维度axis,都可以用到

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值