【张量分析 - 1. 张量的概念】

张量分析

1. 引言

在现代物理学与工程学中,张量分析是不可或缺的一部分。它不仅为描述物理现象提供了一个强有力的数学工具,而且还在几何学、流体力学、广义相对论等领域中发挥着至关重要的作用。本文旨在介绍 张量的基本概念 及其推广形式—— 张量场与张量算子 ,并探讨它们如何作为变量、函数和运算的自然延伸,在复杂系统的研究中构建起一座桥梁。通过将这些概念置于一个统一的框架下,我们将能够更好地理解自然界中的矢量场、应力张量、电磁场等现象背后的数学本质。

2. 张量的概念:变量的推广

  • 张量的历史背景与发展
  • 张量作为多线性映射的理解
  • 矢量与标量的关系及其作为张量的特例
  • 张量的秩与类型
  • 张量的表示方法(如指标记法)

2.1 张量(Tensor)

2.1.1 张量的背景

张量的概念最初是在19世纪由数学家如威廉·罗恩·哈密顿(William Rowan Hamilton)、格拉斯曼(Hermann Grassmann)和吉布斯(J. Willard Gibbs)等人提出和发展起来的。随着物理学的进步,特别是当爱因斯坦提出广义相对论时,张量成为了描述物理定律不变性的重要工具。张量理论的发展不仅推动了数学本身的发展,也为物理学、工程学等多个领域提供了强大的数学语言和工具。

2.1.2 张量的定义

在数学中,张量通常定义为一个多线性映射。具体来说,给定一个向量空间 V V V 及其对偶空间 V ∗ V^* V,一个 ( k , l ) (k,l) (k,l)-型张量 T T T 是一个从 V ∗ × ⋯ × V ∗ × V × ⋯ × V V^* \times \cdots \times V^* \times V \times \cdots \times V V××V×V××V 到标量域(通常是实数域 R \mathbb{R} R 或复数域 C \mathbb{C} C)的 多线性映射
T : ( V ∗ ) k × V l → F T : (V^*)^k \times V^l \to \mathbb{F} T:(V)k×VlF
这里 k k k 表示张量接受 k k k 个协向量作为输入, l l l 表示张量接受 l l l 个向量作为输入。 T T T 的秩是 k + l k + l k+l,其中 k k k 称为协变秩(contravariant rank) l l l 称为反变秩(covariant rank)

张量可以被定义为一种多线性映射,它接受一定数量的向量和协向量作为输入,并输出一个标量值。 这种映射性质使得张量能够有效地处理多维空间中的物理量。例如,在流体动力学中,压力张量就是一种接受两个方向向量作为输入,并给出沿着这两个方向上的力的分量的映射。

2.1.3 张量的性质
  • 线性性:张量对于输入的每一个向量或协向量都是线性的。
  • 协变与反变 :当坐标系改变时,张量的分量会发生变化,但这种变化遵循特定的规则,保持张量作为一个整体的不变性。
  • 对称性与反对称性:某些张量可能满足对称或反对称条件,即对于任意两个输入,交换它们的位置可能会导致张量值相同(对称)或符号相反(反对称)。
2.1.4 张量的分类

张量的秩是指构成该张量所需的基向量的数量。例如,零阶张量(标量)的秩为0,一阶张量(矢量)的秩为1,以此类推。张量还可以根据它们接受的向量(上标)和协向量(下标)的数量来分类,这被称为张量的类型或阶数。例如,一个(1,1)型张量就是一个接受一个向量和一个协向量的张量。

张量可以根据其秩和类型进行分类:

  • 按秩分类:根据张量的总秩(即 k + l k+l k+l),可以有零阶张量(标量)、一阶张量(矢量)、二阶张量等。
  • 按类型分类:根据协变秩和反变秩的不同,张量可以有不同的类型,如 ( 0 , 2 ) (0,2) (0,2)-型张量(二阶协变张量)、 ( 1 , 1 ) (1,1) (1,1)-型张量(混合张量)等。
2.1.5 张量的协变与反变

定义

张量可以分为协变张量(Covariant Tensor)和反变张量(Contravariant Tensor)。这种区分源于它们在坐标变换下的不同行为。

  • 反变张量(Contravariant Tensor) :通常表示为带有上标的分量,如 T i T^i Ti 。在坐标变换时,反变张量的分量会按照反变规则变化。
  • 协变张量(Covariant Tensor) :通常表示为带有下标的分量,如 T i T_i Ti 。在坐标变换时,协变张量的分量会按照协变规则变化。

坐标变换

当我们从一个坐标系变换到另一个坐标系时,张量的分量会发生变化。这种变化遵循一定的规则,使得张量作为一个整体在不同的坐标系中仍然保持一致。

  • 反变张量的变换规则:如果原坐标系下的基向量 e i \mathbf{e}_i ei 变换到新坐标系下的基向量 e i ′ \mathbf{e}'_i ei,反变张量的分量 T i T^i Ti 会按照基向量的逆变换来变换。
  • 协变张量的变换规则:协变张量的分量 T i T_i Ti 会按照基向量的变换来变换。

具体来说,如果坐标变换矩阵为 A A A,则有:

  • 反变张量的分量变换为 T ′ i = A j i T j T'^i = A^i_j T^j Ti=AjiTj
  • 协变张量的分量变换为 T i ′ = ( A − 1 ) i j T j T'_i = (A^{-1})^j_i T_j Ti=(A1)ijTj

例子

  • 矢量(一阶张量):矢量可以是反变的或协变的。
    • 反变矢量(列矢量):如位置矢量、速度矢量等。
    • 协变矢量(行矢量):如梯度。
  • 二阶张量:可以是纯协变、纯反变或混合型。
    • 纯协变二阶张量:如应变张量 ϵ i j \epsilon_{ij} ϵij
    • 纯反变二阶张量:如能量动量张量 T i j T^{ij} Tij
    • 混合二阶张量:如位移梯度张量 u j i u^i_j uji

应用

  • 物理学:在广义相对论中,度规张量 g μ ν g_{\mu\nu} gμν 和其逆 g μ ν g^{\mu\nu} gμν 是非常重要的协变和反变张量。
  • 工程学:在固体力学中,应力张量和应变张量用于描述材料内部的力学性质。
  • 流体力学:速度场被视为一个矢量场,而压强通常被表示为一个二阶张量。

通过理解张量的协变与反变特性,我们可以更好地掌握张量在不同坐标系下的行为,这对于在物理学、工程学以及其他相关领域中的应用至关重要。协变与反变的概念确保了物理定律在任何参考系中都具有一致性和不变性。

2.1.6 张量的表示

张量可以通过不同的方式来表示,其中最常见的是 指标记法 。在指标记法中,每个张量分量都被一个或多个下标和/或上标所标记,这些 下标和上标 代表了分量所对应的 向量空间或协向量空间 。例如,一个二阶张量 T T T可以用 T i j T_{ij} Tij来表示,这里的 i i i j j j是索引,它们可以取一系列离散的值来指明张量的不同分量。

张量的指标记法不仅仅是一个表示方法,它还隐含了张量在坐标变换下的行为规律。当坐标系发生变化时,张量分量会按照一定的规则变化,而这些规则正是通过指标来表达的。例如,当进行洛伦兹变换时,张量分量的变化遵循特定的变换法则,确保了物理定律在所有惯性参考系中的一致性。

在张量分析中,张量可以用各种符号表示,其中最常用的是指标记法。下面我将分别给出标量、矢量和二阶张量的数学表示方法。

  1. 标量(零阶张量)

标量是一个简单的数值,没有方向,因此不需要使用指标来表示。在张量符号中,标量通常直接用一个字母表示,例如:
s s s
其中 s s s 是一个标量。在张量分析中,标量也可以写作 s ∅ s_{\emptyset} s 或者 s 0 s^{0} s0 ,但是由于标量没有方向性,这样的表示并不常见。

  1. 矢量(一阶张量)

矢量是一阶张量,它有一个方向和一个大小。在指标记法中,矢量通常用一个下标或上标来表示其分量。矢量既可以是协变矢量也可以是反变矢量。在三维空间中,一个矢量可以写作:

  • 反变矢量(上标):
    v i v^i vi
    其中 i i i 可以取值为 1, 2, 3,分别对应 x, y, z 方向。
  • 协变矢量(下标):
    v i v_i vi
    协变矢量和反变矢量之间的转换依赖于度规张量 g i j g_{ij} gij 和它的逆 g i j g^{ij} gij
  1. 二阶张量

二阶张量是一个接受一个或两个向量并输出一个标量或多维对象的多线性映射。二阶张量可以用两个指标来表示其分量。常见的二阶张量包括:

  • 纯协变二阶张量(两个下标):
    T i j T_{ij} Tij
    这样的张量接受两个向量作为输入。
  • 纯反变二阶张量(两个上标):
    T i j T^{ij} Tij
    这种类型的张量通常表示为一个矩阵,它可以作用于两个协向量。
  • 混合二阶张量(一个上标和一个下标):
    T j i T^i_j Tji T i j T^j_i Tij
    这种张量可以接受一个向量和一个协向量,或者相反。

让我们来看一些具体的例子:

  • 矢量 v = ( v x , v y , v z ) \mathbf{v} = (v_x, v_y, v_z) v=(vx,vy,vz) 可以写作 v i v^i vi v i v_i vi ,取决于它是反变还是协变矢量。
  • 二阶张量 T \mathbf{T} T 可以是一个应力张量,如果它是纯反变的,则可以写作 T i j T^{ij} Tij ,如果是纯协变的,则写作 T i j T_{ij} Tij

在实际计算中,张量的分量会根据具体的问题和所选择的坐标系有所不同。使用指标记法可以帮助清晰地表示张量在不同坐标系下的变换关系,这对于理解和解决实际问题非常重要。

2.1.7 张量的应用

张量在多个学科领域都有广泛的应用:

  • 物理学:在广义相对论中,爱因斯坦方程涉及到了度规张量和里奇张量等高阶张量。
  • 工程学:在固体力学中,应力张量和应变张量用于描述材料内部的力学性质。
  • 流体力学:速度场被视为一个矢量场,而压强通常被表示为一个二阶张量。
  • 电磁学:麦克斯韦方程组可以使用四维张量来表述,特别是在相对论性电磁学中。
  • 计算机图形学:在图形渲染中,张量用于描述光照模型中的反射和折射特性。
2.1.8 张量的总结

张量 (Tensor) 是一个可以表示在多个方向上、多线性关系的数学量。
标量可以看作是零阶张量
向量可以看作是一阶张量
矩阵可以看作是二阶张量
更高阶的张量则具有更多的指数和分量。

对于张量,其表示方式各异,但通常使用大写字母,并可能用于表示其分量的多个下标。例如,一个三阶张量 T \mathbf{T} T 的元素可能表示为 T i j k T_{ijk} Tijk,其中 i , j , k i, j, k i,j,k 是其指数。

在计算机科学和深度学习中,张量通常表示为多维数组,其中 数组的维数 = 张量的阶数。

张量别名数组定义域(参数)值域(返回值)
零阶张量标量1个数值 N 0 \mathbb{N^0} N0 R \mathbb{R} R
一阶张量向量 or 线性映射一维数组 N 1 \mathbb{N^1} N1 R n \mathbb{R^n} Rn
二阶张量矩阵 or 双线性映射二维数组 N 2 \mathbb{N^2} N2向量空间 V \mathbf{V} V
三阶张量三线性映射三维数组 N 3 \mathbb{N^3} N3微分流形 M \mathbf{M} M
四阶张量四线性映射四维数组 N 4 \mathbb{N^4} N4微分流形 M \mathbf{M} M
n阶张量n线性映射n维数组 N n \mathbb{N^n} Nn微分流形 M \mathbf{M} M

2.2 零阶张量、标量

定义

零阶张量,也称为标量 (Scalar) ,是一个 只有大小,而没有方向 的数值。它是最基本的数学量, 可以是实数或复数 。一般用小写的希腊字母或英文字母来表示,例如 α , β , a , b , c \alpha, \beta, a, b, c α,β,a,b,c 等。标量是线性空间中的一个元素,可以进行加法和乘法运算。

数学表示 s s s ,标量 s s s​ 可以是一个实数或复数 ,表示一个具体的数值。

映射关系零阶张量不是映射,而是一个标量值

性质

  • 无方向性:标量没有方向,只具有大小。
  • 算术运算:标量可以进行加法、减法、乘法和除法等基本算术运算。
  • 线性变换:标量不受坐标变换的影响,因此在不同的坐标系中,标量的值保持不变。
  • 可比较性:标量可以直接相互比较大小,因为它们仅由数值组成。

示例

任何实数或复数,都是零阶张量的示例。例如, c = 7 c = 7 c=7 α = 2.5 \alpha = 2.5 α=2.5

  • 温度 T T T:温度是一个标量,用来描述物体的冷热程度。
  • 质量 m m m:物体的质量也是一个标量,表示物质的数量。
  • 时间 t t t:时间是一个标量,表示事件发生的顺序和持续时间。
  • 密度 ρ \rho ρ:物质的密度是一个标量,表示单位体积内的质量。
  • 电荷 q q q:电荷量是一个标量,表示带电粒子的电量。
  • 反应速率 r r r:表示化学反应进行的速度。
  • 浓度 c c c:表示溶液中溶质的含量。
  • 价格 P P P:商品的价格是一个标量。
  • 利率 r r r:银行的利率也是一个标量。
  • 算法性能 O O O:计算时间、内存消耗等。

零阶张量(标量)虽然简单,但在各个领域中却扮演着重要的角色。标量为我们提供了一种描述物理量大小而不考虑方向的方式,这在很多情况下是非常必要的。

2.3 一阶张量、向量、线性映射、反变、协变

定义

一阶张量,通常称为 向量 (Vector) :是一种 具有大小和方向 的数学对象。在三维空间中,矢量可以用三个分量来表示,每个分量对应一个坐标轴的方向。矢量可以表示为一个有序数组,一般用小写的粗体、箭头上方的字母、或使用上标表示,例如 v , w , v ⃗ , v i \mathbf{v}, \mathbf{w}, \vec{v}, v^i v,w,v ,vi,其中 i i i 表示组件索引。

在数学中,一阶张量(也称为向量)是向量空间中的一个元素。在一个n维向量空间 V V V中,向量 v ⃗ \vec{v} v 可以表示为 v ⃗ = v 1 e ⃗ 1 + v 2 e ⃗ 2 + ⋯ + v n e ⃗ n \vec{v}=v_1\vec{e}_1 + v_2\vec{e}_2+\cdots+v_n\vec{e}_n v =v1e 1+v2e 2++vne n,其中 { e ⃗ i } \{\vec{e}_i\} {e i}是向量空间 V V V的一组基, v i v_i vi是向量 v ⃗ \vec{v} v ​在这组基下的分量。
数学表示 v = ( v 1 , v 2 , … , v n ) \mathbf{v} = (v_1, v_2, \ldots, v_n) v=(v1,v2,,vn) v = ( v 1 , v 2 , v 3 ) \mathbf{v} = (v_1, v_2, v_3) v=(v1,v2,v3) v = v i \mathbf{v} = v^i v=vi
其中 i i i 可以取值为 1, 2, 3,分别对应 x, y, z 方向。

线性映射(Linear Map) :设 V V V W W W是两个向量空间(在同一数域 F F F上),线性映射 T : V → W T:V\rightarrow W T:VW是一个映射,满足对于任意的 u ⃗ , v ⃗ ∈ V \vec{u},\vec{v}\in V u ,v V a , b ∈ F a,b\in F a,bF,有 T ( a u ⃗ + b v ⃗ ) = a T ( u ⃗ ) + b T ( v ⃗ ) T(a\vec{u}+b\vec{v}) = aT(\vec{u})+bT(\vec{v}) T(au +bv )=aT(u )+bT(v )

映射关系:一阶张量可以视为 反变张量(Contravariant Tensor),即一个从从标量空间 F \mathbb{F} F 到向量空间 V V V的线性映射 L L L

也可以视为 协变张量(Covariant Tensor),及一个从向量空间 V V V到标量空间 F \mathbb{F} F 的线性映射 L L L

性质

  • 线性性:矢量可以进行加法和数乘运算,形成新的矢量。
  • 方向性:矢量具有明确的方向,不同于标量。
  • 模长:矢量的模长(长度或大小)可以通过分量计算得出。
  • 坐标变换:矢量的分量在不同坐标系中会按照特定的变换规则变化。
  • 内积与外积:矢量之间可以进行内积(点积)和外积(叉积)运算。

示例

  • 位置 r = ( x , y , z ) \mathbf{r} = (x, y, z) r=(x,y,z) r = r i \mathbf{r} = r^i r=ri :位置矢量是从原点指向空间中某一点的矢量。
  • 速度 v = ( v x , v y , v z ) \mathbf{v} = (v_x, v_y, v_z) v=(vx,vy,vz) v = v i \mathbf{v} = v^i v=vi :速度矢量表示物体运动的方向和速率。
  • F = ( F x , F y , F z ) \mathbf{F} = (F_x, F_y, F_z) F=(Fx,Fy,Fz) F = F i \mathbf{F} = F^i F=Fi :力矢量表示作用在物体上的力的方向和大小。
  • 加速度 a = ( a x , a y , a z ) \mathbf{a} = (a_x, a_y, a_z) a=(ax,ay,az) a = a i \mathbf{a} = a^i a=ai :加速度矢量表示物体加速度的方向和大小。
  • 位移 d = ( d x , d y , d z ) \mathbf{d} = (d_x, d_y, d_z) d=(dx,dy,dz) d = d i \mathbf{d} = d^i d=di :位移矢量表示物体从一个位置到另一个位置的变化。

反变与协变

理解一阶张量作为线性映射的具体对应关系可以帮助我们更好地理解它们在不同上下文中的应用。一阶张量可以分为反变张量(矢量)和协变张量(共形矢量或协矢量),它们分别对应不同的线性映射。

  1. 反变张量(矢量)

反变张量(或称为 矢量)可以表示为 从标量空间 F \mathbb{F} F 到向量空间 V V V 的线性映射。具体来说,一个反变张量可以表示为向量空间中的一个元素,它接受一个标量并输出一个向量。

  • 数学表示 v = v i \mathbf{v} = v^i v=vi
  • 性质:反变张量对于输入的标量是线性的。
  • 映射关系:反变张量可以表示为从标量空间 F \mathbb{F} F 到向量空间 V V V的线性映射。具体而言,给定一个标量 α ∈ F \alpha \in \mathbb{F} αF,反变张量 v \mathbf{v} v 可以表示为:
    v ( α ) = α v \mathbf{v}(\alpha) = \alpha \mathbf{v} v(α)=αv
    这意味着反变张量在给定一个标量时,会产生一个同方向的伸缩或缩放。
  1. 协变张量(协矢量)

协变张量(或称为 协矢量)可以表示为 从向量空间 V V V 到标量空间 F \mathbb{F} F 的线性映射。具体来说,一个协变张量可以表示为向量空间的对偶空间中的一个元素,它接受一个向量并输出一个标量。

  • 数学表示 w = w i \mathbf{w} = w_i w=wi
  • 性质:协变张量对于输入的向量是线性的。
  • 映射关系:协变张量可以表示为从向量空间 V V V 到标量空间 F \mathbb{F} F 的线性映射。具体而言,给定一个向量 u ∈ V \mathbf{u} \in V uV,协变张量 w \mathbf{w} w 可以表示为:
    w ( u ) = w i u i \mathbf{w}(\mathbf{u}) = w_i u^i w(u)=wiui
    这意味着协变张量在给定一个向量时,会产生一个标量值,通常通过内积(点积)来计算。

具体示例

反变张量(矢量)

假设我们有一个三维空间中的反变张量(矢量) v = ( v 1 , v 2 , v 3 ) \mathbf{v} = (v^1, v^2, v^3) v=(v1,v2,v3),它可以表示为:
v = v i \mathbf{v} = v^i v=vi

如果给定一个标量 α \alpha α,则反变张量的线性映射可以表示为:
v ( α ) = α v = ( α v 1 , α v 2 , α v 3 ) \mathbf{v}(\alpha) = \alpha \mathbf{v} = (\alpha v^1, \alpha v^2, \alpha v^3) v(α)=αv=(αv1,αv2,αv3)

协变张量(协矢量)

假设我们有一个三维空间中的协变张量(协矢量) w = ( w 1 , w 2 , w 3 ) \mathbf{w} = (w_1, w_2, w_3) w=(w1,w2,w3),它可以表示为:
w = w i \mathbf{w} = w_i w=wi

如果给定一个向量 u = ( u 1 , u 2 , u 3 ) \mathbf{u} = (u^1, u^2, u^3) u=(u1,u2,u3),则协变张量的线性映射可以表示为:
w ( u ) = w i u i = w 1 u 1 + w 2 u 2 + w 3 u 3 \mathbf{w}(\mathbf{u}) = w_i u^i = w_1 u^1 + w_2 u^2 + w_3 u^3 w(u)=wiui=w1u1+w2u2+w3u3

总结

  • 反变张量(矢量):从标量空间 F \mathbb{F} F 到向量空间 V V V 的线性映射。
    • 映射形式: v ( α ) = α v \mathbf{v}(\alpha) = \alpha \mathbf{v} v(α)=αv
  • 协变张量(协矢量):从向量空间 V V V 到标量空间 F \mathbb{F} F 的线性映射。
    • 映射形式: w ( u ) = w i u i \mathbf{w}(\mathbf{u}) = w_i u^i w(u)=wiui

通过这些定义和示例,我们可以清楚地看到一阶张量(矢量和协矢量)作为不同类型的线性映射在数学和物理中的应用。反变张量和协变张量在坐标变换下的行为不同,但它们都是线性映射的不同表现形式。

应用

一阶张量(矢量)在多个领域都有广泛的应用:

  • 物理学

    • 经典力学:速度、加速度、力等。
    • 电磁学:电场强度、磁场强度等。
    • 流体力学:流体的速度场、压力梯度等。
  • 工程学

    • 机械工程:力的作用、物体的位移等。
    • 土木工程:结构的应力分析等。
  • 计算机图形学

    • 三维建模:物体的位置、旋转等。
    • 动画:物体的运动轨迹等。
  • 地理信息系统(GIS)

    • 地图制图:矢量数据表示地理位置。
    • 路径规划:路线的方向和距离。

通过这些定义、性质、示例和应用,我们可以看到一阶张量(矢量)在描述物理量的方向和大小方面具有重要作用。矢量不仅在数学和物理学中是基本概念,在工程学、计算机科学等多个领域也有着广泛的应用。

2.4 二阶张量、矩阵、线性映射、双线性映射

定义

二阶张量 (2rd-Order Tensor) :是一个具有两个索引的数学对象,可以接受两个向量作为输入,并输出一个标量或多维对象 。二阶张量可以看作是向量空间 V V V到其对偶空间 V ∗ V^* V的线性映射,或者是双线性形式。设 V V V是一个向量空间,二阶张量 T T T是一个多线性函数 T : V × V → F T:V\times V\rightarrow F T:V×VF,满足对于固定的 u ⃗ ∈ V \vec{u}\in V u V T ( u ⃗ , ⋅ ) : V → F T(\vec{u},\cdot):V\rightarrow F T(u ,):VF是线性的,并且对于固定的 v ⃗ ∈ V \vec{v}\in V v V T ( ⋅ , v ⃗ ) : V → F T(\cdot,\vec{v}):V\rightarrow F T(,v ):VF也是线性的。

在三维空间中,二阶张量可以用一个 3 × 3 3 \times 3 3×3​​ 的矩阵来表示。二阶张量 可以是纯协变的、纯反变的或者是混合型的

二阶张量,是一个线性映射(Linear Map),它取一个向量并返回另一个向量。也可以看作一个二维数组 ,它由两个索引描述,例如 A i × j A_{i\times j} Ai×j T i j T_{ij} Tij
一般使用大写的粗体字母、或使用两个索引表示,例如 T , A , B , C , A m × n , T j i \mathbf{T}, \mathbf{A}, \mathbf{B}, \mathbf{C},A_{m\times n} , T^i_j T,A,B,C,Am×n,Tji

数学表示

  • 纯反变二阶张量(两个上标): T i j T^{ij} Tij ,其中 i i i j j j 可以取值为 1, 2, 3,分别对应 x, y, z 方向。

  • 纯协变二阶张量(两个下标): T i j T_{ij} Tij ,其中 i i i j j j 同样可以取值为 1, 2, 3。

  • 混合二阶张量(一个上标和一个下标): T j i T^i_j Tji T i j T^j_i Tij

  • 性质:二阶张量对于输入的每一个向量都是线性的。

  • 映射关系:二阶张量可以视为一个从向量空间到向量空间的双线性映射。例如,对于一个纯反变二阶张量 T i j T^{ij} Tij,可以表示为:
    T i j ( v , w ) = v i w j T^{ij}(v, w) = v^i w^j Tij(v,w)=viwj
    这里 v v v w w w 是向量空间中的向量。

矩阵 (Matrix) :是一个矩形阵列或表格,由标量组成,可以是复数或实数集合。矩阵常用于表示线性方程组、线性变换等。

对于一个 m × n m\times n m×n的矩阵 A = ( a i j ) A=(a_{ij}) A=(aij),其中 i = 1 , ⋯   , m i = 1,\cdots,m i=1,,m j = 1 , ⋯   , n j=1,\cdots,n j=1,,n a i j a_{ij} aij是矩阵 A A A的第 i i i行第 j j j列的元素。在有限维向量空间中,给定 V V V的一组基 { e ⃗ i } \{\vec{e}_i\} {e i} W W W的一组基 { f ⃗ j } \{\vec{f}_j\} {f j},线性映射 T : V → W T:V\rightarrow W T:VW可以用一个矩阵 A A A表示,其中 A A A的元素由 T ( e ⃗ i ) T(\vec{e}_i) T(e i)在基 { f ⃗ j } \{\vec{f}_j\} {f j}下的分量确定。

双线性映射 (Bilinear Map) :设 U U U V V V W W W是向量空间(在同一数域 F F F上),双线性映射 B : U × V → W B:U\times V\rightarrow W B:U×VW是一个映射,满足对于每个固定的 u ⃗ ∈ U \vec{u}\in U u U,映射 B ( u ⃗ , ⋅ ) : V → W B(\vec{u},\cdot):V\rightarrow W B(u ,):VW是线性的,并且对于每个固定的 v ⃗ ∈ V \vec{v}\in V v V,映射 B ( ⋅ , v ⃗ ) : U → W B(\cdot,\vec{v}):U\rightarrow W B(,v ):UW也是线性的。

二阶张量与矩阵的关系

二阶张量可以看作是一种特殊的双线性映射 ,当双线性映射的定义域和值域是同一个向量空间及其对偶空间时,可以和二阶张量建立联系。
矩阵是线性映射在给定基下的一种具体表示形式, 二阶张量在一定意义下也可以用矩阵表示(在给定基下),并且二阶张量可以看作是向量空间到其对偶空间的线性映射,所以它们在表示和概念上存在联系。双线性映射比线性映射更广泛,二阶张量可以看作是一种特殊的双线性映射情况。

矩阵与线性映射的关系
在有限维向量空间的情形下,矩阵可以表示线性映射。
V V V n n n维向量空间, W W W m m m维向量空间,取定 V V V的一组基 { e ⃗ 1 , e ⃗ 2 , ⋯   , e ⃗ n } \left\{\vec{e}_1,\vec{e}_2,\cdots,\vec{e}_n\right\} {e 1,e 2,,e n} W W W的一组基 { f ⃗ 1 , f ⃗ 2 , ⋯   , f ⃗ m } \left\{\vec{f}_1,\vec{f}_2,\cdots,\vec{f}_m\right\} {f 1,f 2,,f m}。对于一个线性映射 T : V → W T:V\rightarrow W T:VW T ( e ⃗ j ) = ∑ i = 1 m a i j f ⃗ i T(\vec{e}_j)=\sum_{i = 1}^{m}a_{ij}\vec{f}_i T(e j)=i=1maijf i j = 1 , ⋯   , n j = 1,\cdots,n j=1,,n,则矩阵 A = ( a i j ) A=(a_{ij}) A=(aij)就表示了线性映射 T T T。所以矩阵是线性映射在给定基下的一种表示形式,而不是线性映射本身。

矩阵与双线性映射的关系

矩阵也可以用来表示双线性映射。 U U U V V V是有限维向量空间,分别取定基 { u ⃗ 1 , u ⃗ 2 , ⋯   , u ⃗ p } \left\{\vec{u}_1,\vec{u}_2,\cdots,\vec{u}_p\right\} {u 1,u 2,,u p} { v ⃗ 1 , v ⃗ 2 , ⋯   , v ⃗ q } \left\{\vec{v}_1,\vec{v}_2,\cdots,\vec{v}_q\right\} {v 1,v 2,,v q}。双线性映射 B : U × V → F B:U\times V\rightarrow F B:U×VF F F F为基域), B ( u ⃗ i , v ⃗ j ) = a i j B(\vec{u}_i,\vec{v}_j)=a_{ij} B(u i,v j)=aij,则矩阵 A = ( a i j ) A=(a_{ij}) A=(aij)​表示这个双线性映射。但矩阵同样不是双线性映射本身,只是一种表示方式。

所以矩阵既不是线性映射,也不是双线性映射,它可以作为线性映射和双线性映射在有限维向量空间取定基后的一种表示形式。

性质

  • 线性性:二阶张量对于输入的向量或协向量是线性的。
  • 协变与反变:二阶张量在坐标变换下的行为取决于其索引的类型。
  • 对称性与反对称性:某些二阶张量可能具有对称性或反对称性,即对于任意两个索引,交换它们的位置可能会导致张量值相同或符号相反。
  • :二阶张量的迹(trace)是其主对角线元素之和,即 T i i T^i_i Tii T i i T_{ii} Tii
  • 行列式:对于纯反变或纯协变二阶张量,可以定义其行列式,表示张量的体积因子。
  • :对于非奇异的二阶张量,可以定义其逆张量。

示例

  • 例1 m × n m \times n m×n​ 的矩阵

    A = [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 … a m n ] \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} A= a11a21am1a12a22am2a1na2namn

  • 例2: 在三维空间中的矩阵。例如,旋转矩阵或惯性张量。
    T = [ 1 0 0 0 cos ⁡ ( θ ) − sin ⁡ ( θ ) 0 sin ⁡ ( θ ) cos ⁡ ( θ ) ] \mathbf{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} T= 1000cos(θ)sin(θ)0sin(θ)cos(θ)
    这表示绕x轴旋转的矩阵。

  • 应力张量 σ i j \sigma_{ij} σij :应力张量描述了物体内部各点处的应力分布情况。其中 σ i j \sigma_{ij} σij 为应力张量的分量。

  • 应变张量 ϵ i j \epsilon_{ij} ϵij :应变张量描述了物体变形的程度。其中 ϵ i j \epsilon_{ij} ϵij 为应变张量的分量。

  • 电磁场张量 F μ ν F^{\mu\nu} Fμν:电磁场张量在狭义相对论中描述了电磁场的状态。其中 F μ ν F^{\mu\nu} Fμν 为电磁场张量的分量。

  • 位移梯度张量 u j i u^i_j uji:位移梯度张量描述了物体内部位移的变化率。其中 u j i u^i_j uji 为位移梯度张量的分量。

应用

二阶张量在多个领域都有广泛的应用:

  • 物理学

    • 广义相对论:度规张量 g μ ν g_{\mu\nu} gμν 描述时空的几何。
    • 电磁学:电磁场张量 F μ ν F^{\mu\nu} Fμν 描述电磁场。
    • 流体力学:应力张量描述流体内部的压力和剪切力。
  • 工程学

    • 固体力学:应力张量和应变张量用于描述材料的力学性质。
    • 结构工程:弹性模量张量描述材料的弹性特性。
  • 材料科学

    • 热传导:热导率张量描述材料的热传导性质。
    • 光学:折射率张量描述晶体的光学性质。
  • 计算机图形学

    • 光照模型:张量用于描述物体表面的反射和折射特性。

2.5 三阶张量、三线性映射

定义

三阶张量 (3rd-Order Tensor) ,是一个具有三个索引的数学对象, 可以接受三个向量作为输入,并输出一个标量或多维对象 。在三维空间中,三阶张量可以用一个 3 × 3 × 3 3 \times 3 \times 3 3×3×3​ 的立方体来表示。三阶张量可以是纯协变的、纯反变的或者是混合型的。

三阶张量,是一个三线性映射(Trilinear Map) ,也可以看作一个三维数组,它由三个索引描述,例如 T i j k T_{ijk} Tijk

数学表示

  • 纯反变三阶张量(三个上标): T i j k T^{ijk} Tijk ,其中 i , j , k i, j, k i,j,k 可以取值为 1, 2, 3,分别对应 x, y, z 方向。
  • 纯协变三阶张量(三个下标): T i j k T_{ijk} Tijk ,其中 i , j , k i, j, k i,j,k 同样可以取值为 1, 2, 3。
  • 混合三阶张量(一个或多个上标和下标): T j k i , T k i j , T i j k , T i j k T^{i}_{jk}, \quad T^{ij}_{k}, \quad T^{ijk}_{}, \quad T_{ijk}^{} Tjki,Tkij,Tijk,Tijk

性质

  • 线性性:三阶张量对于输入的向量或协向量是线性的。
  • 协变与反变:三阶张量在坐标变换下的行为取决于其索引的类型。
  • 对称性与反对称性:某些三阶张量可能具有对称性或反对称性,即对于任意两个或三个索引,交换它们的位置可能会导致张量值相同或符号相反。
  • :三阶张量可以定义为迹,即特定索引的主对角线元素之和,例如 T i i i T^i_{ii} Tiii T i i i T_{iii} Tiii
  • 行列式:对于某些类型的三阶张量,可以定义其行列式。
  • :对于非奇异的三阶张量,可以定义其逆张量。

映射关系:三阶张量可以视为一个从向量空间到向量空间的三线性映射。例如,对于一个纯反变三阶张量 T i j k T^{ijk} Tijk,可以表示为:
T i j k ( v , w , u ) = v i w j u k T^{ijk}(v, w, u) = v^i w^j u^k Tijk(v,w,u)=viwjuk
这里 v , w , u v, w, u v,w,u 是向量空间中的向量。

三线性映射(Trilinear Map) 是一种特殊的多线性映射,它。接受三个向量作为输入,并输出一个标量 。三线性映射的性质在于它对于每一个输入向量都是线性的,即它满足线性映射的基本性质:加法性和数乘性。
V V V W W W 是定义在一个标量域 F \mathbb{F} F 上的向量空间。一个三线性映射 T T T 是一个从 V × V × V V \times V \times V V×V×V F \mathbb{F} F 的映射,即:
T : V × V × V → F T : V \times V \times V \to \mathbb{F} T:V×V×VF
这个映射满足以下性质:

  1. 加法性:对于 F \mathbb{F} F 中的任意标量 α \alpha α β \beta β,以及 V V V 中的任意向量 u , v , w , x , y , z \mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z} u,v,w,x,y,z,有
    T ( u + v , w , x ) = T ( u , w , x ) + T ( v , w , x ) T(\mathbf{u} + \mathbf{v}, \mathbf{w}, \mathbf{x}) = T(\mathbf{u}, \mathbf{w}, \mathbf{x}) + T(\mathbf{v}, \mathbf{w}, \mathbf{x}) T(u+v,w,x)=T(u,w,x)+T(v,w,x)
    T ( u , w + y , x ) = T ( u , w , x ) + T ( u , y , x ) T(\mathbf{u}, \mathbf{w} + \mathbf{y}, \mathbf{x}) = T(\mathbf{u}, \mathbf{w}, \mathbf{x}) + T(\mathbf{u}, \mathbf{y}, \mathbf{x}) T(u,w+y,x)=T(u,w,x)+T(u,y,x)
    T ( u , w , x + z ) = T ( u , w , x ) + T ( u , w , z ) T(\mathbf{u}, \mathbf{w}, \mathbf{x} + \mathbf{z}) = T(\mathbf{u}, \mathbf{w}, \mathbf{x}) + T(\mathbf{u}, \mathbf{w}, \mathbf{z}) T(u,w,x+z)=T(u,w,x)+T(u,w,z)

  2. 数乘性:对于 F \mathbb{F} F 中的任意标量 α \alpha α β \beta β,以及 V V V 中的任意向量 u , v , w , x \mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x} u,v,w,x,有
    T ( α u , w , x ) = α T ( u , w , x ) T(\alpha \mathbf{u}, \mathbf{w}, \mathbf{x}) = \alpha T(\mathbf{u}, \mathbf{w}, \mathbf{x}) T(αu,w,x)=αT(u,w,x)
    T ( u , α w , x ) = α T ( u , w , x ) T(\mathbf{u}, \alpha \mathbf{w}, \mathbf{x}) = \alpha T(\mathbf{u}, \mathbf{w}, \mathbf{x}) T(u,αw,x)=αT(u,w,x)
    T ( u , w , α x ) = α T ( u , w , x ) T(\mathbf{u}, \mathbf{w}, \alpha \mathbf{x}) = \alpha T(\mathbf{u}, \mathbf{w}, \mathbf{x}) T(u,w,αx)=αT(u,w,x)

示例

  • 体积张量 V ( u , v , w ) = u ⋅ ( v × w ) V(\mathbf{u}, \mathbf{v}, \mathbf{w}) = \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) V(u,v,w)=u(v×w) :在三维空间中,三线性映射可以用来计算平行六面体的体积。如果 u , v , w \mathbf{u}, \mathbf{v}, \mathbf{w} u,v,w 是三个三维向量,则它们形成的平行六面体的体积可以通过三线性映射来计算。其中 u ⋅ ( v × w ) \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) u(v×w) 表示向量 u \mathbf{u} u 与向量 v \mathbf{v} v w \mathbf{w} w 的叉积的点积。
  • 弹性张量 C i j k l C_{ijkl} Cijkl:弹性张量描述了材料在受力时的应变与应力之间的关系。在固体力学中,弹性张量 C i j k l C_{ijkl} Cijkl 描述了材料在受力时的应变与应力之间的关系。弹性张量是一个四阶张量,但在某些情况下可以简化为三阶张量。 σ i j = C i j k l ϵ k l \sigma_{ij} = C_{ijkl} \epsilon_{kl} σij=Cijklϵkl ,其中 σ i j \sigma_{ij} σij 为应力张量, ϵ k l \epsilon_{kl} ϵkl 为应变张量。
  • 电磁极化张量 P i j k P_{ijk} Pijk:电磁极化张量描述了电磁场与物质之间的相互作用。其中 P i j k P_{ijk} Pijk 为电磁极化张量的分量。
  • 电磁场强度张量 F μ ν λ F_{\mu\nu\lambda} Fμνλ:在广义相对论中,电磁场强度张量描述了电磁场的状态。其中 F μ ν λ F_{\mu\nu\lambda} Fμνλ 为电磁场强度张量的分量。
  • 热导率张量 κ i j k \kappa_{ijk} κijk:热导率张量描述了热量传递的方向性和强度。其中 κ i j k \kappa_{ijk} κijk 为热导率张量的分量。在某些情况下,热导率张量可以简化为三阶张量。 q i = κ i j k ∇ j T k q_i = \kappa_{ijk} \nabla_j T_k qi=κijkjTk ,其中 q i q_i qi 为热通量, κ i j k \kappa_{ijk} κijk 为热导率张量, ∇ j T k \nabla_j T_k jTk 为温度梯度。

应用

三阶张量在多个领域都有广泛的应用:

  • 物理学

    • 固体力学:弹性张量 C i j k l C_{ijkl} Cijkl 描述了材料在受力时的应变与应力之间的关系。
    • 电磁学:电磁极化张量描述了电磁场与物质之间的相互作用。
    • 广义相对论:在某些扩展理论中,可能会使用三阶张量来描述更复杂的场。
  • 材料科学

    • 热传导:热导率张量描述了材料的热传导性质。
    • 光学:折射率张量和磁光效应张量描述了材料的光学性质。
  • 地球物理学

    • 地震波传播:地震波的传播特性可以用三阶张量来描述。
    • 岩石物理:岩石的弹性性质可以用三阶张量来表示。
  • 计算机科学

    • 图像处理:在图像处理和计算机视觉中,张量可以用来描述图像的多维特征。
    • 机器学习:在深度学习中,高阶张量用于表示神经网络中的权重和其他参数。

2.6 四阶张量、四线性映射

定义
四阶张量 (4rd-Order Tensor) ,是一个 四线性映射 (Quadrilinear Map) ,也可以看作一个四维数组,它由四个索引描述,例如 T i j k l T_{ijkl} Tijkl可以接受四个向量作为输入,并输出一个标量或多维对象 。四阶张量通常用于描述材料的弹性性质、张量积的运算等。

  • 数学表示 T i j k l T^{ijkl} Tijkl T i j k l T_{ijkl} Tijkl
  • 性质:四阶张量对于输入的每一个向量都是线性的。
  • 映射关系:四阶张量可以视为一个从向量空间到向量空间的四线性映射。例如,对于一个纯反变四阶张量 T i j k l T^{ijkl} Tijkl,可以表示为:
    T i j k l ( v , w , u , x ) = v i w j u k x l T^{ijkl}(v, w, u, x) = v^i w^j u^k x^l Tijkl(v,w,u,x)=viwjukxl
    这里 v , w , u , x v, w, u, x v,w,u,x 是向量空间中的向量。

示例

弹性张量 C i j k l C_{ijkl} Cijkl :在固体力学中,弹性张量 C i j k l C_{ijkl} Cijkl 描述了材料在受力时的应变与应力之间的关系。弹性张量是一个四阶张量,这里 i , j , k , l i, j, k, l i,j,k,l 可以取值为 1, 2, 3,分别对应 x, y, z 方向。 σ i j = C i j k l ϵ k l \sigma_{ij} = C_{ijkl} \epsilon_{kl} σij=Cijklϵkl ,其中: σ i j \sigma_{ij} σij 是应力张量的分量。 ϵ k l \epsilon_{kl} ϵkl 是应变张量的分量。 C i j k l C_{ijkl} Cijkl 是弹性张量的分量。

四线性映射 (Quadrilinear Map) ,是一种特殊的多线性映射,它接受四个向量作为输入,并输出一个标量。四线性映射对于每一个输入向量都是线性的。

示例:四线性映射

假设我们有一个四线性映射 T T T,它接受四个向量 u , v , w , x \mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x} u,v,w,x 作为输入,并输出一个标量。

符号表示
T : V × V × V × V → F T : V \times V \times V \times V \to \mathbb{F} T:V×V×V×VF

这里 V V V 是一个向量空间, F \mathbb{F} F 是一个标量域(通常是实数域 R \mathbb{R} R 或复数域 C \mathbb{C} C)。

具体的映射可以表示为:
T ( u , v , w , x ) = T i j k l u i v j w k x l T(\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}) = T_{ijkl} u^i v^j w^k x^l T(u,v,w,x)=Tijkluivjwkxl

这里 T i j k l T_{ijkl} Tijkl 是四阶张量的分量, u i , v j , w k , x l u^i, v^j, w^k, x^l ui,vj,wk,xl 是向量 u , v , w , x \mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x} u,v,w,x 的分量。

性质

  • 加法性:对于 F \mathbb{F} F 中的任意标量 α \alpha α β \beta β,以及 V V V 中的任意向量 u , v , w , x , y , z , p , q \mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{p}, \mathbf{q} u,v,w,x,y,z,p,q,有
    T ( u + v , w , x , y ) = T ( u , w , x , y ) + T ( v , w , x , y ) T(\mathbf{u} + \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}) = T(\mathbf{u}, \mathbf{w}, \mathbf{x}, \mathbf{y}) + T(\mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}) T(u+v,w,x,y)=T(u,w,x,y)+T(v,w,x,y)
    T ( u , w + y , x , y ) = T ( u , w , x , y ) + T ( u , y , x , y ) T(\mathbf{u}, \mathbf{w} + \mathbf{y}, \mathbf{x}, \mathbf{y}) = T(\mathbf{u}, \mathbf{w}, \mathbf{x}, \mathbf{y}) + T(\mathbf{u}, \mathbf{y}, \mathbf{x}, \mathbf{y}) T(u,w+y,x,y)=T(u,w,x,y)+T(u,y,x,y)
    T ( u , w , x + z , y ) = T ( u , w , x , y ) + T ( u , w , z , y ) T(\mathbf{u}, \mathbf{w}, \mathbf{x} + \mathbf{z}, \mathbf{y}) = T(\mathbf{u}, \mathbf{w}, \mathbf{x}, \mathbf{y}) + T(\mathbf{u}, \mathbf{w}, \mathbf{z}, \mathbf{y}) T(u,w,x+z,y)=T(u,w,x,y)+T(u,w,z,y)
    T ( u , w , x , y + q ) = T ( u , w , x , y ) + T ( u , w , x , q ) T(\mathbf{u}, \mathbf{w}, \mathbf{x}, \mathbf{y} + \mathbf{q}) = T(\mathbf{u}, \mathbf{w}, \mathbf{x}, \mathbf{y}) + T(\mathbf{u}, \mathbf{w}, \mathbf{x}, \mathbf{q}) T(u,w,x,y+q)=T(u,w,x,y)+T(u,w,x,q)

  • 数乘性:对于 F \mathbb{F} F 中的任意标量 α \alpha α β \beta β,以及 V V V 中的任意向量 u , v , w , x \mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x} u,v,w,x,有
    T ( α u , w , x , y ) = α T ( u , w , x , y ) T(\alpha \mathbf{u}, \mathbf{w}, \mathbf{x}, \mathbf{y}) = \alpha T(\mathbf{u}, \mathbf{w}, \mathbf{x}, \mathbf{y}) T(αu,w,x,y)=αT(u,w,x,y)
    T ( u , α w , x , y ) = α T ( u , w , x , y ) T(\mathbf{u}, \alpha \mathbf{w}, \mathbf{x}, \mathbf{y}) = \alpha T(\mathbf{u}, \mathbf{w}, \mathbf{x}, \mathbf{y}) T(u,αw,x,y)=αT(u,w,x,y)
    T ( u , w , α x , y ) = α T ( u , w , x , y ) T(\mathbf{u}, \mathbf{w}, \alpha \mathbf{x}, \mathbf{y}) = \alpha T(\mathbf{u}, \mathbf{w}, \mathbf{x}, \mathbf{y}) T(u,w,αx,y)=αT(u,w,x,y)
    T ( u , w , x , α y ) = α T ( u , w , x , y ) T(\mathbf{u}, \mathbf{w}, \mathbf{x}, \alpha \mathbf{y}) = \alpha T(\mathbf{u}, \mathbf{w}, \mathbf{x}, \mathbf{y}) T(u,w,x,αy)=αT(u,w,x,y)

总结

  • 四阶张量 C i j k l C_{ijkl} Cijkl 可以用于描述材料的弹性性质,例如应力张量 σ i j \sigma_{ij} σij 和应变张量 ϵ k l \epsilon_{kl} ϵkl 之间的关系。
  • 四线性映射 T T T 接受四个向量作为输入,并输出一个标量,它对于每一个输入向量都是线性的。

通过这些示例,我们可以更好地理解四阶张量和四线性映射在数学和物理中的应用。这些张量和映射在描述物理量之间的复杂关系方面具有重要作用。

2.7 n阶张量、n线性映射

定义
n阶张量 (nrd-Order Tensor) ,是一个n线性映射 (n - Linear Map),也可以看作一个n维数组,每个维度都有相同或不同的大小,它由n个索引描述,例如 T i 1 i 2 … i n T_{i_1 i_2 \dots i_n} Ti1i2in
在数据科学和深度学习中,更高阶的张量在某些场景中是常见的,例如存储某些多模态数据或特定类型的网络权重。

示例
为了说明,考虑一个5阶张量 T i j k l m T_{ijklm} Tijklm,其中每个索引可以从1到10变化,这意味着我们有一个10x10x10x10x10的数组。
需要注意的是,尽管数组是张量表示的一种方式,但张量的本质定义与其在特定基础下的组件无关,而与其作为多线性映射的性质有关。

2.8 张量与线性映射的总结

理解零阶张量、一阶张量、二阶张量、三阶张量和四阶张量与线性映射、双线性映射、三线性映射和四线性映射之间的对应关系有助于我们更好地理解这些数学对象的性质和用途。以下是这些概念之间的对应关系:

  • 零阶张量(标量)不是映射,而是一个标量值。
  • 一阶张量(矢量)可以视为从标量到向量空间或从向量空间到标量空间的线性映射。
  • 二阶张量 可以视为从向量空间到向量空间的双线性映射。
  • 三阶张量 可以视为从向量空间到向量空间的三线性映射。
  • 四阶张量 可以视为从向量空间到向量空间的四线性映射。

通过这种方式,我们可以理解张量如何作为多线性映射的不同阶数来描述物理量之间的复杂关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值