目标检测环境安装软件tensorflow-gpu

pip install tensorflow1.14.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install keras
2.1.5 -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install tensorflow-gpu==1.14.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

输入 conda create -n tensorflow python=3.7(也可以3.7 个人喜欢)

2.安装tensorflow-gpu
首先 activate trnsorflow (tensorflow是你创建的环境名称)
然后
conda install tensorflow-gpu
conda install keras
即可

5.gpu版测试代码
方法一

import tensorflow as tf
import timeit

with tf.device(‘/cpu:0’):
cpu_a = tf.random.normal([10000, 1000])
cpu_b = tf.random.normal([1000, 2000])
print(cpu_a.device, cpu_b.device)

with tf.device(‘/gpu:0’):
gpu_a = tf.random.normal([10000, 1000])
gpu_b = tf.random.normal([1000, 2000])
print(gpu_a.device, gpu_b.device)

def cpu_run():
with tf.device(‘/cpu:0’):
c = tf.matmul(cpu_a, cpu_b)
return c

def gpu_run():
with tf.device(‘/gpu:0’):
c = tf.matmul(gpu_a, gpu_b)
return c

warm up

cpu_time = timeit.timeit(cpu_run, number=10)
gpu_time = timeit.timeit(gpu_run, number=10)
print(‘warmup:’, cpu_time, gpu_time)

cpu_time = timeit.timeit(cpu_run, number=10)
gpu_time = timeit.timeit(gpu_run, number=10)
print(‘run time:’, cpu_time, gpu_time)
结果

方法二
import tensorflow as tf
import os

os.environ[‘TF_CPP_MIN_LOG_LEVEL’]=‘2’

a = tf.constant(1.)
b = tf.constant(2.)
print(a+b)

print(‘GPU:’, tf.test.is_gpu_available())

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风口上的传奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值