ELAN:将超分网络SwinIR高效化,
https://github.com/xindongzhang/ELAN
pip install pytorch-msssim -i https://pypi.tuna.tsinghua.edu.cn/simple pip install pyyaml -i https://pypi.tuna.tsinghua.edu.cn/simple pip install tqdm -i https://pypi.tuna.tsinghua.edu.cn/simple
cd ELAN
python train.py --config ./configs/elan_light_x4.yml
data_path: '/home/xindongzhang/SR_datasets'
data_path: './DIV2K_train_HR' eval_sets: ['Set5', 'Set14', 'B100', 'Urban100', 'Manga109']
gpu_ids: [4, 5, 6, 7]
batch_size: 64
改为
data_path: './train_data' eval_sets: ['Set5'] gpu_ids: [0]
batch_size: 8
设置数据集路径:
创建文件夹:
\train_data\div2k_cache\div2k_hr\rgb\DIV2K_train_HR
train_data\div2k_cache\div2k_lr_x4\rgb\DIV2K_train_LR_bicubic\X4
train_data\div2k_cache\div2k_lr_x2\rgb\DIV2K_train_LR_bicubic\X2
train_data\\benchmark/Set5/HR
继续训练:
python train.py --config ./configs/elan_light_x2.yml --resume ./experiments/elan-fp32-x2-2022-0718-1936