python实现yuv转RGB图片程序

全套源码下载地址:https://download.csdn.net/download/bvngh3247/10774909
主程序:

import os
import cv2
import numpy as np
from PIL import Image
#from scipy import misc
import utilty as util

search_path = 'E:/stitch/run_auto_video'

def yuv_to_rgb(yuv_path, frame_num):
  #yuv_path = search_path + '/' + filename
  print(yuv_path)
  w = int(1080)
  h = int(1920)
  recon_ycbcr_image = np.zeros((h, w, 3), np.uint8)
  recon_y = recon_ycbcr_image[:, :, 0]
  w_c = int(w/2)
  h_c = int(h/2)
  #print (w_c)
  #print (h_c)
  recon_cb = np.zeros((h_c, w_c), np.uint8)
  recon_cr = np.zeros((h_c, w_c), np.uint8)


  #PIL image
  #image = Image.open(pic_path)
  #image.show() 
  #image = np.array(image)
  #h,w,c
  #print(image.shape)
  #img = Image.fromarray(img.astype('uint8')).convert('RGB')
  #im = Image.fromarray(image)
  #im.save('./123.tif')     


  util.read_yuv420_file(yuv_path, recon_y, recon_cb, recon_cr, w, h, frame_num)

  recon_cb = util.resize_image_by_pil(recon_cb, 2)
  recon_cr = util.resize_image_by_pil(recon_cr, 2)
  recon_ycbcr_image[:, :, 1] = recon_cb
  recon_ycbcr_image[:, :, 2] = recon_cr

  # yuv444 to rgb
  rgb_image = util.convert_ycbcr_to_rgb(recon_ycbcr_image, False)

  test_name = yuv_path[:-4] + '.JPG'
  print('output =>' +  test_name)
  util.save_image(test_name, rgb_image) 


yuv_path = search_path + '/' + '2.yuv'
frame_num = 9 #zhaopan(1,9)
yuv_to_rgb(yuv_path, frame_num)

读取yuv,并且转为RGB,图片读写程序:

import os
import numpy as np
from scipy import misc
from PIL import Image

def read_yuv420_file(r_file, y, cb, cr, w, h, frame_num):
        my_file = open(r_file,'rb')
        my_file.read((frame_num-1)*int(w*h*3/2))
        for num in range(0, 1):
            print ('frame = ' + str(frame_num))
            for i in range(0, h):
                for j in range(0, w):
                    data = my_file.read(1)
                    data = ord(data)
                    y[i, j] = data
            for y in range(0, int(h / 2)):
                for x in range(0, int(w / 2)):
                    data = my_file.read(1)
                    data = ord(data)
                    cb[y, x] = data
            for y in range(0, int(h / 2)):
                for x in range(0, int(w / 2)):
                    data = my_file.read(1)
                    data = ord(data)
                    cr[y, x] = data

def convert_ycbcr_to_rgb(ycbcr_image, jpeg_mode=True, max_value=255.0):
	rgb_image = np.zeros([ycbcr_image.shape[0], ycbcr_image.shape[1], 3])  # type: np.ndarray

	if jpeg_mode:
		rgb_image[:, :, [1, 2]] = ycbcr_image[:, :, [1, 2]] - (128.0 * max_value / 256.0)
		xform = np.array([[1, 0, 1.402], [1, - 0.344, - 0.714], [1, 1.772, 0]])
		rgb_image = rgb_image.dot(xform.T)
	else:
		rgb_image[:, :, 0] = ycbcr_image[:, :, 0] - (16.0 * max_value / 256.0)
		rgb_image[:, :, [1, 2]] = ycbcr_image[:, :, [1, 2]] - (128.0 * max_value / 256.0)
		xform = np.array(
			[[max_value / 219.0, 0, max_value * 0.701 / 112.0],
			 [max_value / 219, - max_value * 0.886 * 0.114 / (112 * 0.587), - max_value * 0.701 * 0.299 / (112 * 0.587)],
			 [max_value / 219.0, max_value * 0.886 / 112.0, 0]])
		rgb_image = rgb_image.dot(xform.T)

	return rgb_image
def resize_image_by_pil(image, scale, resampling_method="bicubic"):
	width, height = image.shape[1], image.shape[0]
	new_width = int(width * scale)
	new_height = int(height * scale)

	if resampling_method == "bicubic":
		method = Image.BICUBIC
	elif resampling_method == "bilinear":
		method = Image.BILINEAR
	elif resampling_method == "nearest":
		method = Image.NEAREST
	else:
		method = Image.LANCZOS

	if len(image.shape) == 3 and image.shape[2] == 3:
		image = Image.fromarray(image, "RGB")
		image = image.resize([new_width, new_height], resample=method)
		image = np.asarray(image)
	elif len(image.shape) == 3 and image.shape[2] == 4:
		# the image may has an alpha channel
		image = Image.fromarray(image, "RGB")
		image = image.resize([new_width, new_height], resample=method)
		image = np.asarray(image)
	else:
		image = Image.fromarray(image.reshape(height, width))
		image = image.resize([new_width, new_height], resample=method)
		image = np.asarray(image)
		#image = image.reshape(new_height, new_width, 1)
	return image
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风口上的传奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值