人工智能--模型评估指标

背景

1、分类回归模型的评估指标

分类模型的目标是将输入数据分配到一个离散类别中,常见的评估指标如下:

  1. 准确率 (Accuracy)
    在这里插入图片描述

解释:表示模型预测正确的样本占总样本的比例。适用于类分布平衡的情况,但在类别不平衡时表现不佳。

  1. 精确率 (Precision)
    在这里插入图片描述

解释:衡量模型在预测为正类时,实际为正类的比例。适用于当误报代价较高的情况(例如垃圾邮件检测)。

  1. 召回率 (Recall)
    在这里插入图片描述

解释:衡量模型能识别出实际正类的比例。适用于漏报代价较高的情况(例如疾病检测)。

  1. F1 分数 (F1-Score)
    在这里插入图片描述

解释:精确率和召回率的调和平均,适用于当精确率和召回率都很重要时。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值