背景
1、分类回归模型的评估指标
分类模型的目标是将输入数据分配到一个离散类别中,常见的评估指标如下:
- 准确率 (Accuracy)

解释:表示模型预测正确的样本占总样本的比例。适用于类分布平衡的情况,但在类别不平衡时表现不佳。
- 精确率 (Precision)

解释:衡量模型在预测为正类时,实际为正类的比例。适用于当误报代价较高的情况(例如垃圾邮件检测)。
- 召回率 (Recall)

解释:衡量模型能识别出实际正类的比例。适用于漏报代价较高的情况(例如疾病检测)。
- F1 分数 (F1-Score)

解释:精确率和召回率的调和平均,适用于当精确率和召回率都很重要时。