全面解读机器学习之决策树

一、决策树的构造

  • 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。
  • 缺点:可能会产生过度匹配问题。
  • 适用数据类型:数值型和标称型。

  决策树的一般流程:

  • 收集数据:可以使用任何方法。
  • 准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化。
  • 分析数据:可以使用任何方法,构造树完成之后,我们应该检查图形是否符合预期。
  • 训练算法:构造树的数据结构。
  • 测试算法:使用经验树计算错误率。
  • 使用算法:此步骤可以适用于任何监督学习算法,而使用决策树可以更好地理解数据的内在含义。

  使用ID3算法划分数据集。

1. 信息增益

  在划分数据集之前之后信息发生的变化称为信息增益。知道如何计算信息增益,就知道计算每个特征值划分数据集获得的信息增益,获得信息增益最高的特征就是最好的选择。

  定义为信息的期望值。如果待分类的事务可能划分在多个分类之中,则符号 x i x_i xi的信息定义为:

I ( x i ) = − log ⁡ 2 p ( x i ) . I(x_i)=-\log_2p(x_i). I(xi)=log2p(xi).

其中 p ( x i ) p(x_i) p(xi)是选择该分类的概率。并且需要计算所有类别所有可能值包含的信息期望值:

H = − ∑ i = 1 n p ( x i ) log ⁡ 2 p ( x i ) . H=-\sum_{i=1}^np(x_i)\log_{2}p(x_i). H=i=1np(xi)log2p(xi).

其中, n n n是分类数目。下面,创建trees.py文件,实现信息熵的使用。

from math import log

def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {
   }
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0 # 将标签加入到字典中
        labelCounts[currentLabel] += 1 # 统计每个标签的数量
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key]) / numEntries #选key分类的概率
        shannonEnt -= prob * log(prob, 2) # 香农公式
    return shannonEnt

  测试一下:

def createDataSet():
    dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0 ,1, 'no'],
               [0 ,1, 'no']]
    labels = ['no surfing', 'flippers']
    return dataSet, labels
myData, labels = createDataSet()
myData[0][-1] = 'maybe'
#print(calcShannonEnt(myData))
myData[0][-1] = 'yes' # 再改回来
'''
0.9709505944546686
'''

  熵越高,混合的数据也越多。在数据集上添加一些新的标签,熵就会变大。

myData[0][-1] = 'maybe'
print(calcShannonEnt(myData))
'''
1.3709505944546687
'''

2. 划分数据集

  上一节,通过度量划分数据集的熵,来判断当前是否是正确地划分了数据集。熵值越大,表示数据越混乱,自然划分成功的可能性越小。下面函数实现了以第axis个特征值为标准,对该特征是否是value进行划分:

# 返回对第axis列中的特征的划分 结果是value的数据
def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value: # 第axis个特征等于value的话
            reducedFeatVec = featVec[:axis] # 将axis所指的特征去除掉即可
            reducedFeatVec.extend(featVec[axis + 1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

print(splitDataSet(myData, 0, 1))
print(splitDataSet(myData, 0, 0))
'''
#结果是去掉axis所指的特征
[[1, 'maybe'], [1, 'yes'], [0, 'no']]
[[1, 'no'], [1, 'no']]
'''

  python中的append()extend()函数是有差别的:

a = [1,2,3,4,5]
b = [1,2]
b.append(a[2:])
# b = [1, 2, [3, 4, 5]]
c = [3,5]
c.extend(a[:3])
# c = [3, 5, 1, 2, 3]

  下面遍历数据集,找到最好的特征值划分方式。

# 选出整个数据集最好的特征划分
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1 # 最后一项是标签
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0
    bestFeature = -1
    for i in range(numFeatures):
        # 使用列表推导来创建新的列表
        # 将数据集中所有第i个特征值或者所有可能存在的值写入新的list
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList) # 集合中值唯一 顺序排好
        newEntropy = 0.0
        for value in uniqueVals:
            # 按照第i个特征进行划分
            subDataSet 
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值