YB菜菜的机器学习自学之路(三)——简单了解梯度下降
前提说明
从求解简单的一元二次代价函数,复习罗森布拉特感知器模型,并简单了解平面梯度下降.
从(二)中,可知,代价函数为: e = ( y − w x ) 2 = x 2 w 2 − 2 x y w + y 2 ( 1 ) e=(y-wx)^{2}=x^{2}w^{2}-2xyw+y^{2} (1) e=(y−wx)2=x2w2−2xyw+y2(1)
代价函数求解
从代价函数可以看出,这是一个简单的开口向上的一元二次函数,其中 w w w为自变量, e e e为因变量,如图1所示。求解这个函数最低点处的 w w w值,即为最佳参数。
图1
1. 公式法求解
从前面我们知道代价函数的完整公式为:
e = 1 m [ ( x 1 2 + x 2 2 + . . . + x i 2 ) w 2 − 2 ( x 1 ∗ y 1 + x 2 ∗ y 2 + . . . + x i ∗ y i ) w + ( y 1 2 + y 2 2 + . . . + y i 2 ) ] ( 2 ) e=\frac{1}{m}[(x_{1}^{2}+x_{2}^{2}+...+x_{i}^{2})w^{2}-2(x_{1}*y_{1}+x_{2}*y_{2}+...+x_{i}*y_{i})w+ (y_{1}^{2}+y_{2}^{2}+...+y_{i}^{2})] (2) e=m1[(x1