Tensorflow对训练模型的保存以及使用

本文详细介绍了如何在TensorFlow中保存训练好的模型,并演示了如何在后续任务中加载和使用这些模型,以便进行预测或进一步训练。通过实例展示了`tf.train.Saver`和`tf.saved_model` API的用法,帮助读者掌握模型持久化的关键步骤。
摘要由CSDN通过智能技术生成

(1)对训练模型的保存,将模型命名为my_net.ckp,并保存在net/文件夹下
         saver = tf.train.Saver()
         with tf.Session() as sess:
             #保存模型
             saver.save(sess,'net/my_net.ckpt')
(2)对本地模型进行调用
        saver = tf.train.Saver()
         with tf.Session() as sess:
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值