这题和poj2482还有“蛇”那题差不多,也是二维转一维,存活时间(时间点思想)。另外通过做这题发现一个这类题的一个特点,就是每次的删除操作肯定是删除之间已经插入的一些线段,这样我们发现这类线段树和之间写的线段树有些许不同,更加像"线段树",每次更新这颗"线段树"里的一些线段(节点),并作一些统计,是用不到PushDown操作的。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
#define maxn 205
#define lson l,mid,rt<<1
#define rson mid,r,rt<<1|1
vector<double> X;
struct SegmentType{
double l,r,h;
int val;
bool operator < (const SegmentType& a) const{
return h<a.h;
}
}Seg[205];
double Tree[maxn<<2];
int Cnt[maxn<<2];
void Build()
{
memset(Tree,0,sizeof(Tree));
memset(Cnt,0,sizeof(Cnt));
}
void PushUp(int l,int r,int rt)
{
if(Cnt[rt]!=0)
{
Tree[rt]=X[r-1]-X[l-1];
}
else if((r-l)==1)
{
Tree[rt]=0;
}
else
{
Tree[rt]=Tree[rt<<1]+Tree[rt<<1|1];
}
}
void Update(int val,int L,int R,int l,int r,int rt)
{
if(L<=l&&r<=R)
{
Cnt[rt]+=val;
PushUp(l,r,rt);
return ;
}
if(R<=l||L>=r)
return ;
int mid=(l+r)>>1;
Update(val,L,R,lson);
Update(val,L,R,rson);
PushUp(l,r,rt);
}
void Init()
{
X.clear();
Build();
}
int main()
{
int n,i,L,R,l,r,cas=1;
double h,w,x1,x2,y1,y2,ans=0;
while(scanf("%d",&n)!=EOF&&n!=0)
{
Init();
for(i=0;i<n;++i)
{
scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2);
Seg[i].l=x1,Seg[i].r=x2,Seg[i].h=y1,Seg[i].val=1;
Seg[i+n].l=x1,Seg[i+n].r=x2,Seg[i+n].h=y2,Seg[i+n].val=-1;
X.push_back(x1);
X.push_back(x2);
}
X.resize(distance(X.begin(),unique(X.begin(),X.end())));
l=1,r=X.end()-X.begin()+1;
sort(X.begin(),X.end());
sort(Seg,Seg+2*n);
ans=0,h=0,w=0;
for(i=0;i<2*n;++i)
{
if(Seg[i].h!=h)
{
w=Tree[1];
ans+=w*(Seg[i].h-h);
h=Seg[i].h;
}
L=lower_bound(X.begin(),X.end(),Seg[i].l)-X.begin()+1;
R=lower_bound(X.begin(),X.end(),Seg[i].r)-X.begin()+1;
Update(Seg[i].val,L,R,l,r,1);
}
printf("Test case #%d\nTotal explored area: %.2f\n\n",cas++,ans);
}
return 0;
}