hdu1542 线段树 矩形面积并

这题和poj2482还有“蛇”那题差不多,也是二维转一维,存活时间(时间点思想)。另外通过做这题发现一个这类题的一个特点,就是每次的删除操作肯定是删除之间已经插入的一些线段,这样我们发现这类线段树和之间写的线段树有些许不同,更加像"线段树",每次更新这颗"线段树"里的一些线段(节点),并作一些统计,是用不到PushDown操作的。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
#define maxn 205
#define lson l,mid,rt<<1
#define rson mid,r,rt<<1|1
vector<double> X;
struct SegmentType{
    double l,r,h;
    int val;
    bool operator < (const SegmentType& a) const{
        return h<a.h;
    }
}Seg[205];
double Tree[maxn<<2];
int Cnt[maxn<<2];
void Build()
{
    memset(Tree,0,sizeof(Tree));
    memset(Cnt,0,sizeof(Cnt));
}
void PushUp(int l,int r,int rt)
{
    if(Cnt[rt]!=0)
    {
        Tree[rt]=X[r-1]-X[l-1];
    }
    else if((r-l)==1)
    {
        Tree[rt]=0;
    }
    else
    {
        Tree[rt]=Tree[rt<<1]+Tree[rt<<1|1];
    }
}
void Update(int val,int L,int R,int l,int r,int rt)
{
    if(L<=l&&r<=R)
    {
        Cnt[rt]+=val;
        PushUp(l,r,rt);
        return ;
    }
    if(R<=l||L>=r)
        return ;
    int mid=(l+r)>>1;
    Update(val,L,R,lson);
    Update(val,L,R,rson);
    PushUp(l,r,rt);
}
void Init()
{
    X.clear();
    Build();
}
int main()
{
    int n,i,L,R,l,r,cas=1;
    double h,w,x1,x2,y1,y2,ans=0;
    while(scanf("%d",&n)!=EOF&&n!=0)  
    {
        Init();
        for(i=0;i<n;++i)
        {
            scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2);
            Seg[i].l=x1,Seg[i].r=x2,Seg[i].h=y1,Seg[i].val=1;
            Seg[i+n].l=x1,Seg[i+n].r=x2,Seg[i+n].h=y2,Seg[i+n].val=-1;
            X.push_back(x1);
            X.push_back(x2);
        }
        X.resize(distance(X.begin(),unique(X.begin(),X.end())));
        l=1,r=X.end()-X.begin()+1;
        sort(X.begin(),X.end());
        sort(Seg,Seg+2*n);
        ans=0,h=0,w=0;
        for(i=0;i<2*n;++i)
        {
            if(Seg[i].h!=h)
            {
                w=Tree[1];
                ans+=w*(Seg[i].h-h);
                h=Seg[i].h;
            }
            L=lower_bound(X.begin(),X.end(),Seg[i].l)-X.begin()+1;
            R=lower_bound(X.begin(),X.end(),Seg[i].r)-X.begin()+1;
            Update(Seg[i].val,L,R,l,r,1);
        }
        printf("Test case #%d\nTotal explored area: %.2f\n\n",cas++,ans);
    }
    return 0;
}        
            


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值