【AI学习】Mamba学习(五):《HiPPO: Recurrent Memory with Optimal Polynomial Projections》

在这里插入图片描述
SSM之后,就需要接着学习HiPPO了。
《HiPPO: Recurrent Memory with Optimal Polynomial Projections》
论文地址:https://arxiv.org/abs/2008.07669

摘要

从连续数据中学习的一个核心问题是,随着更多数据的处理,以增量方式表示累积历史。我们介绍了一个通用框架(HiPPO),用于通过投影到多项式基上对连续信号和离散时间序列进行在线压缩。给定一个指定过去每个时间步长重要性的度量,HiPPO会产生一个自然在线函数近似问题的最优解。作为特例,我们的框架从第一性原理中对最近的勒让德记忆单元(LMU)进行了简短的推导,并推广了循环神经网络(如GRU)的普遍门控机制。这种形式化框架产生了一种新的内存更新机制(HiPPO LegS),该机制可随时间扩展以记住所有历史,避免在时间尺度上出现先验。HiPPO LegS具有时间尺度鲁棒性、快速更新和有界梯度的理论优势。通过将记忆动态结合到循环神经网络中,HiPPO-RNN可以经验性地捕捉复杂的时间依赖性。在打乱顺序的基准MNIST数据集上,HiPPO LegS设定了98.3%的最新精度。最后,在一项新的轨迹分类任务中,测试了对分布外时间尺度和缺失数据的鲁棒性,HiPPO-LegS的准确率比RNN和神经ODE基线高出25-40%。

文章翻译

在网上搜索,居然没有这篇论文的翻译,于是,用翻译工具先进行了翻译,后续再进行继续理解。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在下载或安装 Mamba 时遇到 `OSError: [Errno 12] Cannot allocate memory` 错误,通常与系统资源不足、内存管理配置不当或环境依赖问题相关。以下是针对该问题的解决方法: ### 检查并优化系统资源使用 - **关闭不必要的进程**:确保当前运行的其他程序不会占用过多内存。可以使用 `top` 或 `htop` 命令查看系统资源使用情况,并终止占用资源过高的进程。 - **增加交换空间(Swap Space)**:如果物理内存不足,可以通过增加交换分区或交换文件来缓解内存压力。例如,创建一个临时的交换文件: ```bash sudo fallocate -l 4G /swapfile sudo chmod 600 /swapfile sudo mkswap /swapfile sudo swapon /swapfile ``` 安装完成后可将其从系统中移除以恢复原始状态。 ### 调整 Python 和 Conda 的行为 - **使用 `--no-cache-dir` 参数**:在使用 pip 安装包时添加 `--no-cache-dir` 参数,避免缓存占用过多内存[^1]。 - **降低并行编译线程数**:对于通过源码构建的包,如 PyTorch 或 CUDA 扩展,可通过设置环境变量 `MAX_JOBS=1` 来限制并发线程数量,从而减少内存消耗。 - **尝试使用 `mamba install` 替代 `pip install`**:Mamba 自身基于 Conda 构建,推荐优先使用 Conda 环境进行安装,它能更高效地处理依赖关系和资源分配[^3]。 ### 配置合适的 CUDA 环境 - **确认 CUDA 版本兼容性**:确保使用的 CUDA 工具包版本与 Mamba 兼容。若提示缺少特定版本(如 cuda-11.8.0),应明确指定通道安装对应的 NVIDIA 包: ```bash conda install -c "nvidia/label/cuda-11.8.0" cuda-nvcc ``` 此操作有助于避免因 CUDA 库缺失或不匹配导致的内存分配失败[^3]。 ### 使用虚拟环境或容器化方案 - **采用轻量级虚拟环境**:创建最小化的 Conda 环境,仅包含必需的依赖项,以减少整体内存需求。 - **考虑 Docker 容器**:将 Mamba 安装在 Docker 容器内,利用容器隔离机制控制资源分配,同时规避宿主机上的潜在冲突[^4]。 ### 替代方案与代码调整 - **替换非必要 CUDA 方法**:若错误源于 Triton 加速模块或其他特定于 GPU 的实现,可尝试用原生 PyTorch 代码替代相关部分。尽管这可能影响性能,但能够绕过硬件限制使程序得以运行[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bylander

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值