【AI学习】从混元T1看Mamba与Transformer的融合

因为去年学习了几个月的Mamba模型,所以有关Mamba的重要进展对我就很有吸引力。腾讯在2025年3月21日推出腾讯混元T1正式版,这是一个采用了Transformer与Mamba融合架构的模型。本文是按照CoT的思维方式,对T1的逐步理解过程。

混元T1综述

首先通过Deepseek的深度思考和联网模式,快速了解一下T1的整体情况。


腾讯混元T1正式版是腾讯在2025年3月21日推出的自研深度思考模型,其架构设计体现了多项技术创新,综合了Transformer与Mamba架构的优势,并在工业界首次实现超大规模推理模型的混合架构应用。以下从架构组成、核心技术突破和性能表现三方面进行详细解析:

一、核心架构:Hybrid-Mamba-Transformer融合模式
混元T1采用了Hybrid-Mamba-Transformer融合架构,这是工业界首次将混合Mamba架构无损应用于超大型推理模型。具体特点包括:

  1. 架构组成

    • Mamba模块:基于结构化状态空间模型(SSM),通过高效处理长序列数据降低计算复杂度,减少KV-Cache内存占用。
    • Transformer模块:保留传统注意力机制,确保复杂上下文捕捉能力,避免长文本推理中的信息丢失。
    • 动态路由机制:根据输入序列长度自动分配计算资源,短序列优先使用Transformer,长序列调用Mamba模块优化效率。
  2. 技术突破

    • 通过SSD(结构化状态空间二元性)理论打通Mamba与Transformer的数学关联,引入Transformer的优化方法到SSM中。
    • 采用Hybrid-Mamba-MoE(混合专家系统)设计,实现模型参数动态激活,在相同参数量下解码速度提升2倍。

二、专项优化与训练策略

  1. 长文本处理优化

    • 针对超长文本(如数万tokens)的上下文丢失和长距离依赖问题,通过Mamba架构的序列并行计算和增量式缓存机制,将长序列处理效率提升40%。
    • 引入上下文长度阶梯式扩展训练,逐步提升模型对16K→32K→128K tokens长度的适应能力。
  2. 训练成本控制

    • 相比纯Transformer架构,混合架构使训练成本降低约35%,推理成本减少50%。
    • 通过半精度量化和动态批处理技术,实现首字响应时间<500ms,吐字速度最高达80 tokens/s。
  3. 强化学习优化

    • 后训练阶段投入96.7%算力用于强化学习,结合数学、逻辑推理、代码等理科难题的专项训练数据。
    • 采用Self-rewarding机制,利用早期版本T1-preview生成反馈信号,结合人类偏好对齐模型输出。

三、性能表现与行业对标

  1. 基准测试成绩

    • 在MMLU-PRO(87.2分)、CEval(92.1)、AIME(85.3)等推理类评测中,达到DeepSeek R1和OpenAI o1同等水平。
    • 在长文本任务(如法律文档分析、代码生成)中,上下文捕捉准确率比T1-preview提升28%。
  2. 应用场景适配

    • 支持动态工具调用(如API接口、数据库查询),在指令跟随任务中的响应准确率达93%。
    • 已集成于腾讯文档、微信读书等产品,在中文文案创作、文本摘要等场景表现优于同类模型。

总结
混元T1的Hybrid-Mamba-Transformer架构通过融合两种模型的优势,解决了传统Transformer在长序列处理中的效率瓶颈,同时保持了强推理能力。其技术路径为行业提供了非纯Transformer架构的新范式,尤其在成本控制与工业级部署场景中展现了竞争力。目前该模型已在腾讯云开放API服务,输入/输出定价分别为每百万tokens 1元和4元。

模型架构的继续理解

关于模型架构,腾讯没有发布技术报告,所以能深入了解的内容较少。DS了模型的大小,没有获得任何有价值的信息。关于模型架构的深入理解,索引文章中有一段描述,摘录如下。


混元T1正式版沿用了混元Turbo S的模型架构,采用的是Hybrid-Mamba-Transformer融合模式。

混元Turbo S是腾讯自研的快思考模型——

区别于DeepSeek R1等慢思考模型,Turbo S更强调“秒回”,即吐字速度更快,首字时延更低。

非传统Transformer架构的好处在于,能有效降低Transformer架构的计算复杂度,减少KV-Cache缓存占用,实现训练和推理成本的下降。

新的融合模式一方面发挥了Mamba高效处理长序列的能力,另一方面保留了Transformer擅长捕捉复杂上下文的优势,突破的传统Transformer架构在长文训练和推理成本方面面临的难题。

腾讯官方没有透露更多技术细节,但可以参考Mamba-2论文做一个简单的理解:

在Mamba-2中,研究团队发现,Transformer中的注意力机制与SSM(结构化状态空间模型)存在紧密的数学联系,两者都可以表示为可半分离矩阵(Semiseparable Matrices)的变换。

基于这个发现,Mamba-2的作者提出了SSD(结构化状态空间二元性)理论,把Transformer和Mamba给打通了:

SSD可以将Transformer架构多年积累起来的优化方法引入SSM。比如引入张量并行和序列并行,扩展到更大的模型和更长的序列;或是引入可变序列,以实现更快的微调和推理。


关于模型架构,是否采用了MoE架构,继续通过Deepseek进行了解:


腾讯混元T1的架构设计中确实明确采用了MoE(混合专家系统)架构,这一信息在官方发布的多个技术文档和应用报道中均有直接说明。以下是具体分析:

一、官方明确的技术架构说明

基于MoE的基座模型

混元T1的核心基座为TurboS快思考模型,该模型在2025年3月初发布时即被定义为“业界首个超大规模Hybrid-Transformer-Mamba MoE大模型”。官方明确指出,TurboS的架构融合了Transformer、Mamba和MoE三种技术,其中MoE用于动态激活专家网络以提升效率。

Hybrid-Mamba-Transformer融合模式

混元T1的架构被描述为Hybrid-Mamba-Transformer融合模式,其中MoE作为核心组件之一,通过动态路由机制分配输入序列到不同的专家网络(如数学推理、长文本处理等模块),实现参数的高效利用。官方强调,这种设计使相同参数量下解码速度提升2倍,并显著降低训练和推理成本。

二、与早期混元MoE模型的关联

技术路径延续

腾讯混元团队在2024年已推出多款MoE架构模型(如开源的“混元Large”),并积累了MoE共享专家路由、专家特化学习率适配等关键技术。混元T1延续了这一技术路线,将MoE与Mamba架构结合,进一步优化了长序列处理和推理效率。

强化学习的专项优化

在模型后训练阶段,官方提到通过MoE动态激活策略,结合96.7%的强化学习算力投入,实现了对数学、代码等高难度任务的专项优化。这种设计依赖MoE架构的灵活参数分配能力。

三、性能与成本优势的佐证

效率指标

T1的吐字速度达到60-80 tokens/s,首字响应时间低于500ms,官方将此归因于MoE架构的稀疏激活特性,即仅调用部分专家网络而非全参数计算。对比纯Transformer架构,训练成本降低35%,推理成本减少50%。

行业对标

在MMLU-PRO、CEval等评测中,T1的得分接近DeepSeek R1和OpenAI o1,而这两者均为已知采用MoE架构的模型。官方通过架构创新(如MoE与Mamba的融合)实现了性能对标,侧面印证了MoE的应用。

四、总结:官方明确报道与技术验证

混元T1的MoE架构并非行业猜测,而是腾讯官方在多篇技术公告和应用案例中明确披露的核心设计。其创新点在于将MoE与Mamba、Transformer深度融合,突破了传统架构的效率瓶颈。如需进一步验证,可参考腾讯云官网发布的技术白皮书或Hugging Face模型。


腾讯云官网发布的技术白皮书摘录:

混元-T1: 强化学习驱动,业内首个超大规模混合Mamba推理模型正式发布

强化学习在大语言模型的后训练阶段开创了新的Scaling范式,这一突破正日益受到业界重视。随着OpenAI O系列模型与DeepSeek R1的相继发布,模型展现的卓越性能充分证明了强化学习在优化过程中的关键作用。

今年2月中,混元团队在腾讯元宝APP上线了基于混元中等规模底座的混元T1-Preview(Hunyuan-Thinker-1-Preview)推理模型,为用户带来了极致、快速的深度思考体验。

今天,我们非常高兴地向大家宣布混元大模型系列的深度思考模型已成功升级为混元-T1正式版,该模型基于我们在3月初发布的业界首个超大规模Hybrid-Transformer-Mamba MoE大模型TurboS快思考基座,通过大规模后训练显著扩展了推理能力,并进一步对齐人类偏好。

混元-T1相比前代T1-preview模型综合效果提升显著,是一款业界领先的前沿强推理大模型。

基于TurboS的T1在深度推理方向展现了独特的优势。TurboS的长文捕捉能力帮助Turbo-S有效解决了长文推理中经常遇到的上下文丢失和长距离信息依赖难题。其次,其Mamba架构专门优化了长序列的处理能力,通过高效的计算方式,能够在保证长文本信息捕捉能力的同时,显著降低计算资源的消耗,相同部署条件下、解码速度快2倍。

在模型后训练阶段,我们96.7%的算力投入到了强化学习训练,重点围绕纯推理能力的提升以及对齐人类偏好的优化。

我们收集了世界理科难题,涵盖数学/逻辑推理/科学/代码等,这些数据集涵盖了从基础的数学推理到复杂的科学问题解决,结合ground- truth的真实反馈,确保模型在面对各种推理任务时能够展现出卓越的能力。

在训练方案上,我们采用了课程学习的方式逐步提升数据难度,同时阶梯式扩展模型上下文长度,使得模型推理能力提升的同时学会高效利用token进行推理。

在训练策略上,我们参考了经典强化学习的数据回放/阶段性策略重置等策略,显著提升了模型训练长期稳定性50%以上。在对齐人类偏好阶段,我们采用了self-rewarding(基于T1- preview 的早期版本对模型输出进行综合评价、打分) + reward mode 的统一奖励系统反馈方案,指导模型进行自我提升,模型在答复中展现了更丰富的内容细节以及更高效的信息。

混元-T1除了在各类公开benchmark、如MMLU-pro、CEval、AIME、Zebra Loigc等中英文知识和竞赛级数学、逻辑推理指标上基本持平或略超R1外,在内部人工体验集评估上也能对标,其中文创指令遵循、文本摘要、agent能力方面略有胜。

模型架构的深入理解

关于模型架构,通过Deepseek,基本上就能理解上述那么多了。真正的深入理解,还是需要靠个人。

首先,找到一篇相关文章,《Mamba真比Transformer更优吗?Mamba原作者:两个都要!混合架构才是最优解》,对其中的关键描述摘录如下:

简单来说,基于Mamba架构的语言模型在长上下文任务上不敌Transformer。技术报告分别训练出Mamba、Mamba-2、Mamba-2-Hybrid、Transformer等4种架构的8B参数模型,在35个NLP下游任务中对比性能,实验结果表明,虽然Mamba和Mamba-2更擅长建模语言,但在上下文学习方面,以及从上下文中回忆信息时,性能落后于Transformer模型。进一步的分析,纯SSM架构模型尤其对MMLU和「电话簿」任务表现不佳,可能原因:这两个任务需要上下文学习、token间信息路由以及从上下文复制的能力,它们可能是Mamba系列模型的能力软肋。
解决思路就是让SSM和Transformer强强联合,这就有了SSM-Transformer混合架构。具体做法是将自注意力和MLP层添加到Mamba架构中。56层的Mamba-2-Hybrid中包含4个(7.1%)自注意力层,24 个(42.9%)Mamba-2层和28个(50%)MLP 层,其中Mamba-2层使用与Mamba-2模型相同的参数。消融实验的结果还显示,混合模型中不添加旋转位置编码(RoPE)能达到更好的下游任务性能,而且Mamba层、自注意力层、MLP层的顺序也会影响模型能力。具体来说,Mamba层必须出现在架构的开头,以确保模型自然地学习到位置信息;相比使用重复块模式,将自注意力和MLP均匀分散在整个模型是更好的配置
。”

通过上面的描述可以对如何构建Mamba和Transformer混合架构有一个大概的理解,再深入的话,就需要看论文原文了。

论文:https://arxiv.org/pdf/2406.07887
在这里插入图片描述

关于Mamba2,介绍的文章有很多,随便找一篇——《再战Transformer!原作者带队的Mamba 2来了》。不过呢,Mamba2的复杂程度,不是靠这一篇文章能够理解的,还是需要从论文原文读起,那就不是个把小时的事情了,就此打住吧。

### Mamba Transformer Integration Research In the realm of machine learning and data processing, integrating specialized architectures like Mamba with transformers has garnered significant attention. The `MambaOutput` class within the Hugging Face Transformers library is designed to handle specific outputs from models that incorporate elements of both transformer architecture and unique features attributed to Mamba[^1]. The fusion leverages the strengths of transformers—such as self-attention mechanisms which allow for parallelization during training and superior performance on sequence-based tasks—and integrates these with characteristics inherent to Mamba models. This combination aims at enhancing model efficiency while maintaining or improving accuracy. For instance, when considering a scenario where one utilizes this integrated approach: ```python from transformers import AutoModelWithLMHead, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('mambabased-model') model = AutoModelWithLMHead.from_pretrained('mambabased-model') input_text = "An example input sentence." inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(inputs['input_ids']) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` This code snippet demonstrates how an integrated Mamba-transformer model can be loaded using pretrained weights through the Hugging Face library. It showcases tokenizing input text, generating output based on the given context, and decoding it back into readable form. --related questions-- 1. What are some key benefits observed by combining Mamba-specific components with traditional transformer layers? 2. How does incorporating Mamba influence computational requirements compared to standard transformer implementations? 3. Can you provide examples of datasets particularly suited for evaluation with Mamba-integrated transformer models? 4. Are there any notable challenges encountered during the development phase of such hybrid architectures?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bylander

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值