tensorflow之variable

tensorflow中的variable令人迷糊。它与python的变量是何关系?请看文档的定义。

A variable maintains state in the graph across calls to run(). You add a variable to the graph by constructing an instance of the class Variable.

在graph中交叉调用run时,variable用来维持其状态。通俗地说,通过variable,可以在多次运行时,保存graph的状态。比如,训练模型时,每一个模型的参数需要在训练更新后保存下来,供下一次使用,模型参数有可以利用 variable来定义。

python的变量和其他语言类似,指程序段运行时的临时值,它有作用域,一般有局部作用域、全局作用域等。variable有点类似全局作用域的变量。函数内部定义的python变量属于局部作用域变量,当函数执行完毕,该变量不复存在,下次调用该函数时,无法取得变量上次的值。(c++的静态变量可以保存变量的上次调用值)

tensorflow的变量共享又是什么梗?

在一个函数内定义的variable,如果另一个函数想访问,那就需要变量共享的支持了。那变量共享是如何做到的呢,可以想象成variable是定义在graph范围的变量,在同一个图中实现共享。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值