Description
在一场ORC对NightElf比赛中(ORC必胜!),ORC全军覆没,只留下英雄--剑圣。
已知这个地图上有很多分叉,而剑圣正好在最顶端。在每个分叉处有敌人的军队封锁。
设剑圣在i行j列,则他可以到达i+1行j列,i+1行j+1列,i+1行j+2列。
每支敌人的军队的力量不同。
剑圣可以使用魔法“疾风步”(剑圣的保命魔法)来通过一个关卡而不用受到伤害。
剑圣需要你来找出一条路线,使他受到的伤害最少。
Format
Input
第一行为关卡层数n(n<200)和剑圣可以使用“疾风步”的次数q(q<=n)。
第二行为剑圣的初始生命m(m<32767)。
以下n行为地图上军队力量(整数)的描述(若某个关卡上的军队力量为p,则剑圣不用“疾风步”时通过此关卡须受到p点伤害)
Output
一行,若剑圣仍活着则输出他剩余的生命值,如果生命值小于等于0,则输出“DEAD”。
Samples
输入数据 1
3 1
10
1
1 2 3
1 2 3 4 5
Copy
输出数据 1
8
思路
首先,我们可以发现,这道题可以用dp和递归来完成。
再看数据,发现太大,只能用dp来完成。
然后,立一个三维数组:f[i][j][k],ij表示位置,k表示使用魔法的次数。
最后,得出这道题的递推公式:
代码见下:
#include<bits/stdc++.h>
using namespace std;
int d=1e7,wl[]={9,2,5,5,4,5,6,3,7,6};
int f[501][501][201];
int z[100000],sd,g[100000],o[100000],uss[501][501],q;
int n,m,mo=1e9+7;
int s=10;
int sf=1,sg=s,sh,tt=9e8,l,k;
char iio;
struct ll{
int a,b,c;
}v[102345];
bool qp(ll a,ll b){
return a.a<b.a;
}
int main(){
cin>>n>>q>>sd;
memset(f,0,sizeof(f));
for(int i=1;i<=n;i++){
for(int j=1;j<=i*2-1;j++){
cin>>uss[i][j];
for(int k=0;k<=q;k++) f[i][j][k]=100010;
}
}
for(int i=n;i>=1;i--){
for(int j=i*2-1;j>=1;j--){
f[i][j][0]=min(f[i+1][j][0],min(f[i+1][j+1][0],f[i+1][j+2][0]))+uss[i][j];
//cout<<f[i][j][k]<<" ";
for(int k=1;k<=q;k++){
f[i][j][k]=min(min(f[i+1][j][k],min(f[i+1][j+1][k],f[i+1][j+2][k]))+uss[i][j],min(f[i+1][j][k-1],min(f[i+1][j+1][k-1],f[i+1][j+2][k-1])));
//cout<<f[i][j][k]<<" ";
}
//cout<<" ";
}
//cout<<endl;
}
for(int i=0;i<=q;i++){
tt=min(tt,f[1][1][i]);
//cout<<f[1][1][i]<<" ";
}
if(tt<sd) cout<<sd-tt;
else cout<<"DEAD";
return 0;
}