上图 5月18日发布的Google Lens将应用于谷歌助手以及谷歌照片,它可帮助用户自动删掉不需要的照片。(资料图片)
中图 柯洁九段在备受瞩目的人机大战中。(资料图片)
下图 IBM预计人工智能Watson每年将赚100亿美元。(资料图片)
“人机大战2.0版”,第三局第125手,替AlphaGo执子的黄士杰博士落下一枚黑子,棋盘对面年轻的“世界围棋第一人”柯洁在巨大压力下离开了座位,观战记者随后听到十几米外传来压抑但清晰的哭声。
和0∶3的比分相比,这个充满戏剧化的场景似乎更是对人工智能强大能力的某种写照,AlphaGo超越了千百年来人类以智慧和经验主义对围棋的认识。而在几年前,程序员们还因为人工智能能够在一堆图片里认出猫来就欢欣鼓舞。
人工智能正在飞速成长,《全球人工智能发展报告2017》显示,2012年后成立的人工智能企业,在数量上超过了之前20年所有人工智能企业数量的两倍。目前,美国人工智能企业已超过3000家,中国则超过了1500家。在资本市场,人工智能获得的风险投资也从2012年的5.89亿美元猛增至2016年的50多亿美元。市场研究机构麦肯锡预计,到2025年,人工智能应用市场总值将达到1270亿美元。
“60多年前,计算机科学的奠基人图灵在‘计算机与智能’一文的结尾写下这样的话:我们只能看清前方很近的距离,但我们能看到那里有太多的事需要去完成。这句话也适合用来描述今天的人工智能。”IBM大中华区首席技术官沈晓卫颇为感慨。
当人工智能敲响了门,我们将迎来怎样的世界?
“三管齐下”跑步前进
“幸福人生的逼迫,这就是人类生活的意义。”这句几乎可以从乐观主义维度形容人工智能影响的诗句,并非出自人类之手,而来自于微软的人工智能应用“小冰”,由它创作的一本名叫《阳光失了玻璃窗》的诗集,登上了书店诗歌新作的排行榜。
从AlphaGo到微软“小冰”,人工智能为何能变得更聪明?科学家们将其拆解为“强芯片+大数据+优算法”,人工智能快速成长,正来自于这“三管齐下”的跑步前进。
芯片像是人工智能的身体。Alphabet执行董事长施密特坦言,20年前他之所以放弃人工智能研究,觉得AI没什么前途,重要原因就是,“和那时比,现在机器计算能力增强了,才能支持现在的算法,让人工智能的智商得以提升”。
科技巨头们纷纷投入重金,特别设计专门用于人工智能的芯片。AlphaGo依靠的正是在云上运行的4个用于神经网络计算的TPU芯片。第二代TPU芯片每秒能提供180万亿次浮点运算,有64G的超高带宽存储器。强大的计算力也带来了计算成本的下降,AlphaGo开发团队表示,随着TPU的应用,它节约的成本可以打造另外15个数据中心。沈晓卫表示,IBM开发出了类脑芯片,用54亿个晶体管模拟100万个神经元。采取异步电路的设计,芯片能耗仅为70毫瓦。有消息显示,苹果也正在研发一款被称为“苹果神经引擎”的人工智能芯片,用来改进苹果设备在处理人脸识别、语音识别等人工智能任务时的表现。
算法则像是人工智能的大脑。AlphaGo技术负责人大卫·席尔瓦表示,新版AlphaGo能让去年与李世石对战的版本三子(这相当于职业九段与业余5段之间的水平差异),但能耗和计算力的耗费仅相当于旧版的十分之一。这样的“多快好省”正来自于基础算法,包括用来选点的策略网络和用来判断胜率的价值网络的大幅度优化。更重要的是,增强学习在新版的AlphaGo的算法权重中更高,这就意味着相比学习人类顶尖职业棋手的棋谱,AlphaGo更多依靠自我对弈来学习,通过自我对弈,它甚至形成了类似于人类棋手在形势判断上的“直觉”,学会了以类似于人类棋手“复盘”的形式检讨此前的棋招得失。
有了强壮的身体和聪明的大脑,人工智能还需要“吃好喝好”,用丰富的数据资源形成“智慧”。北京邮电大学计算机围棋研究所所长刘知青坦言,通过人类的几十万张棋谱和自我对弈产生的新棋谱,丰富的数据成为AlphaGo实力提升的关键。而对于普通人来讲,移动互联网的快速普及和与诸多生活场景的打通,也在不断产生着海量数据。如今,全球每月活跃的安卓设备超过20亿部,苹果则生产了超过10亿部手机,谷歌CEO桑达尔·皮查伊表示,目前谷歌已有多个产品和服务的用户数量突破10亿,它们是Google地图、YouTube(视频服务)、Chrome(浏览器)、Gmail(电子邮件)、搜索和Google Play(在线应用程序商店)。“通过采集海量用户数据,进行机器的深度学习,我们可以更科学更智能地解决问题。”猎豹移动CEO傅盛同样表示,旗下的Live.me作为美国最大的第三方直播平台,每天产生上千万张标准人脸。“这些数据让猎豹移动开发出了新的人脸识别技术,在儿童识别等领域大量使用。”
转自工控资料窝