自控原理
文章平均质量分 90
OneMillet
这个作者很懒,什么都没留下…
展开
-
典型环节频率响应仿真(Pspice基于模拟线路仿真)
本文包含以下内容:一、惯性环节幅频曲线二、积分环节幅频曲线三、微分环节幅频曲线四、比例微分幅频曲线一、惯性环节幅频曲线1、搭建惯性环节的模拟线路传递函数如下:G(s)=1Ts+1G(s)= \frac {1} {Ts+1}G(s)=Ts+11其中,T=R2∗C1T=R2*C1T=R2∗C1频率响应:G(jω)=1jTω+1G(jω)= \frac {1} {jTω+1}G(jω)=jTω+11对数幅值:LA(jω)=−20lg1+T2ω2LA(jω)= -2原创 2021-03-15 21:34:07 · 5788 阅读 · 1 评论 -
滞环型PFC线路学习总结(一)----环路分析
初步介绍:PFC线路的一个主要目的就是实现开关变换器在一定功率输出范围内保持,电网电流于电网电压同相且波形趋近,也就是所谓的高PF低THD。为了实现这一效果有多种检测和控制方式,本文以滞环型PFC为例做简要分析。滞环型PFC线路,顾名思义,就是使电网电流(也就是电感电流)在一个滞环内变化,而这个滞环与电网电压同相,效果如下:另外,本文基于如下拓扑讨论:...原创 2021-07-05 16:27:04 · 2856 阅读 · 0 评论 -
从频域幅频曲线看系统性能
前边的文章介绍过在时域上系统的特征根对系统特性的影响:二阶系统欠阻尼状态极点位置对阶跃响应的影响这里简单回顾下:典型二阶系统的传递函数如下: H(s)=ωn2s2+2ξ∗ωn∗s+ωn2\ H(s)= \frac{ωn^2 }{s^2 +2ξ*ωn*s+ωn^2} H(s)=s2+2ξ∗ωn∗s+ωn2ωn2特征方程为: s2+2ξ∗ωn∗s+ωn2=0\ {s^2 +2ξ*ωn*s+ωn^2}=0 s2+2ξ∗ωn∗s+ωn2=0欠阻尼状态原创 2021-04-20 00:21:06 · 5604 阅读 · 0 评论