系统稳定性(基于matlab求传递函数特征根)

本文包含以下内容:
一、系统稳定性概念
二、系统稳定性判断

一、系统稳定性概念
系统加入扰动后偏离了原来的状态,当把干扰去掉后,系统如果能恢复到原来的状态,则说明系统稳定。

二、系统稳定性判断
脉冲信号可以视为典型的扰动信号,假设,系统的脉冲响应为k(t),若
lim ⁡ t → + ∞ k ( t ) = 0 \lim_{t \to +\infty}k(t)= 0 t+limk(t)=0
则系统稳定。
将系统的传递函数写成部分分式展开的形式:
K ( s ) = A 1 s − a 1 + A 2 s − a 2 + A 3 s − a 3 + . . . + A n s − a n K(s)=\frac{A1}{s-a1}+\frac{A2}{s-a2}+\frac{A3}{s-a3}+...+\frac{An}{s-an} K(s)=sa1A1+sa2A2+sa3A3+...+sanAn
对上式进行拉氏反变换可得:

k(t)=A1ea1*t + A2ea2*t +A3ea3*t +…+Anean*t

由系统稳定条件我们可以得出,只要an都小于0则,
lim ⁡ t → + ∞ k ( t ) = 0 \lim_{t \to +\infty}k(t)= 0 t+limk(t)=0

也就是说,只要系统得特征方程的根都小于0,即系统的极点都在左半平面,则系统稳定。

通过matlab的roots()函数很容易可以求出特征方程的根。

举例,有如下传递函数:
G ( s ) = 10 s 2 + 2 ∗ s + 10 G(s)=\frac{10}{s^2+2*s+10} G(s)=s2+2s+1010
用roots()函数判定该系统稳定性。
在matlab中输入如下代码,可以求出系统的特征根。

den = [1 2 10];
roots(den)

ans =

  -1.0000 + 3.0000i
  -1.0000 - 3.0000i
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页