knn算法

文章目录

1、算法概述
2、三要素
k值的选取
距离度量的方式
分类决策规则
3、算法实现
1、简单方法
2、KD树
1、KD树的建立
2、KD树搜索最近邻
3、KD树预测
3、球树
1、球树的建立
2、 球树搜索最近邻
4、算法总结
1、算法概述

1、kNN算法又称为k近邻分类(k-nearest neighbor classification)算法。
K近邻是一种基本分类与回归的方法
可以简单粗暴的认为是:K个最近的邻居,当K=1时,算法便成了最近邻算法,即寻找最近的那个邻居。为何要找邻居?
打个比方来说,假设你来到一个陌生的村庄,现在你要找到与你有着相似特征的人群融入他们,所谓入伙。
或者,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出了。
其实这两个例子就是运用了KNN的思想。KNN方法既可以做分类,也可以做回归,这点和决策树算法相同。
用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居),这K个实例的多数属于某个类,就把该输入实例分类到这个类中。
举个例子吧:

如上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。也就是说,现在,我们不知道中间那个绿色的数据是从属于哪一类(蓝色小正方形or红色小三角形),下面,我们就要解决这个问题:给这个绿色的圆分类。
我们常说,物以类聚,人以群分,判别一个人是一个什么样品质特征的人,常常可以从他/她身边的朋友入手,所谓观其友,而识其人。我们不是要判别上图中那个绿色的圆是属于哪一类数据么,好说,从它的邻居下手。但一次性看多少个邻居呢?从上图中,你还能看到:

如果K=3,绿色圆点的最近的3个邻居是2个红色小三角形和1个蓝色小正方形,少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于红色的三角形一类。
如果K=5,绿色圆点的最近的5个邻居是2个红色三角形和3个蓝色的正方形,还是少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于蓝色的正方形一类。
于此我们看到,当无法判定当前待分类点是从属于已知分类中的哪一类时,我们可以依据统计学的理论看它所处的位置特征,衡量它周围邻居的权重,而把它归为(或分配)到权重更大的那一类。这就是K近邻算法的核心思想。

2、三要素

KNN算法我们主要要考虑三个重要的要素
k值的选取,距离度量的方式和分类决策规则

k值的选取

对于k值的选择,没有一个固定的经验,一般根据样本的分布,选择一个较小的值,可以通过交叉验证选择一个合适的k值。
  选择较小的k值,就相当于用较小的领域中的训练实例进行预测,训练误差会减小,只有与输入实例较近或相似的训练实例才会对预测结果起作用,与此同时带来的问题是泛化误差会增大,换句话说,K值的减小就意味着整体模型变得复杂,容易发生过拟合;
  选择较大的k值,就相当于用较大领域中的训练实例进行预测,其优点是可以减少泛化误差,但缺点是训练误差会增大。这时候,与输入实例较远(不相似的)训练实例也会对预测器作用,使预测发生错误,且K值的增大就意味着整体的模型变得简单。
  一个极端是k等于样本数m,则完全没有分类,此时无论输入实例是什么,都只是简单的预测它属于在训练实例中最多的类,模型过于简单。
在实际应用中,K值一般取一个比较小的数值,例如采用交叉验证法(简单来说,就是一部分样本做训练集,一部分做测试集)来选择最优的K值。

距离度量的方式

对于距离的度量,我们有很多的距离度量方式,但是最常用的是欧式距离
欧氏距离,最常见的两点之间或多点之间的距离表示法,又称之为欧几里得度量,它定义于欧几里得空间中,如点 x = (x1,…,xn) 和 y = (y1,…,yn) 之间的距离为:

曼哈顿距离,我们可以定义曼哈顿距离的正式意义为L1-距离或城市区块距离,也就是在欧几里得空间的固定直角坐标系上两点所形成的线段对轴产生的投影的距离总和。例如在平面上,坐标(x1, y1)的点P1与坐标(x2, y2)的点P2的曼哈顿距离为:|x1-x2|+|y1-y2|,要注意的是,曼哈顿距离依赖坐标系统的转度,而非系统在坐标轴上的平移或映射。
通俗来讲,想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。而实际驾驶距离就是这个“曼哈顿距离”,此即曼哈顿距离名称的来源, 同时,曼哈顿距离也称为城市街区距离(City Block distance)。

切比雪夫距离,若二个向量或二个点p 、and q,其座标分别为pi及qi,则两者之间的切比雪夫距离定义如下:D(p,q)=max(|pi-qi|),这也等于以下Lp度量的极值:,因此切比雪夫距离也称为L∞度量。

以数学的观点来看,切比雪夫距离是由一致范数(uniform norm)(或称为上确界范数)所衍生的度量,也是超凸度量(injective metric space)的一种。
在平面几何中,若二点p及q的直角坐标系坐标为(x1,y1)及(x2,y2),则切比雪夫距离为:
D=max(|x2-x1|,|y2-y1|)。

玩过国际象棋的朋友或许知道,国王走一步能够移动到相邻的8个方格中的任意一个。那么国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?
你会发现最少步数总是max( | x2-x1 | , | y2-y1 | ) 步 。有一种类似的一种距离度量方法叫切比雪夫距离。
1
2
3
4
5
6

闵可夫斯基距离(Minkowski Distance),闵氏距离不是一种距离,而是一组距离的定义。

分类决策规则

对于分类决策规则,一般都是使用前面提到的多数表决法。所以我们重点是关注上面说的k值的选择和距离的度量方式。

3、算法实现

1、简单方法

既然我们要找到k个最近的邻居来做预测,那么我们只需要计算预测样本和所有训练集中的样本的距离,然后计算出最小的k个距离即可,接着多数表决,很容易做出预测。这个方法的确简单直接,在样本量少,样本特征少的时候有效。但是在实际运用中很多时候用不上,为什么呢?因为我们经常碰到样本的特征数有上千以上,样本量有几十万以上,如果我们这要去预测少量的测试集样本,算法的时间效率很成问题。因此,这个方法我们一般称之为蛮力实现。比较适合于少量样本的简单模型的时候用。
  既然蛮力实现在特征多,样本多的时候很有局限性,那么我们有没有其他的好办法呢?有!这里我们讲解两种办法,一个是KD树实现,一个是球树实现。

2、KD树

KD树算法没有一开始就尝试对测试样本分类,而是先对训练集建模,建立的模型就是KD树,建好了模型再对测试集做预测。所谓的KD树就是K个特征维度的树,注意这里的K和KNN中的K的意思不同。KNN中的K代表特征输出类别,KD树中的K代表样本特征的维数。为了防止混淆,后面我们称特征维数为n。
KD树算法包括三步,第一步是建树,第二部是搜索最近邻,最后一步是预测。

1、KD树的建立

我们首先来看建树的方法。KD树建树采用的是从m个样本的n维特征中,分别计算n个特征的取值的方差,用方差最大的第k维特征nk来作为根节点。对于这个特征,我们选择特征nk的取值的中位数nkv对应的样本作为划分点,对于所有第k维特征的取值小于nkv的样本,我们划入左子树,对于第k维特征的取值大于等于nkv的样本,我们划入右子树,对于左子树和右子树,我们采用和刚才同样的办法来找方差最大的特征来做更节点,递归的生成KD树。

构造平衡kd树算法:
输入:k维空间数据集T={x1,x2,…,xN},
其中xi=(x(1)i,x(2)i,…,x(k)i)T
, i=1,2,…N;
输出:kd树
(1)开始:构造根结点,根结点对应于包含T
的k维空间的超矩形区域。
选择x(1)为坐标轴,以T中所有实例的x(1)坐标的中位数为切分点,将根结点对应的超矩形区域切分为两个子区域。切分由通过切分点并与坐标轴x(1)垂直的超平面实现。 将落在切分超平面上的实例点保存在根结点。
(2)重复。对深度为j的结点,选择x(l)为切分的坐标轴,l=j(modk)+1,以该结点的区域中所有实例的x(l)
坐标的中位数为切分点,将该结点对应的超矩形区域切分为两个子区域。切分由通过切分点并与坐标轴x(l)垂直的超平面实现。 由该结点生成深度为j+1的左、右子结点:左子结点对应坐标x(l)小于切分点的子区域,右子结点对应坐标x(l)大于切分点的子区域。 将落在切分超平面上的实例点保存在该结点。
(3)直到两个子区域没有实例存在时停止,从而形成kd 树的区域划分.

具体流程如下图:

再举一个简单直观的实例来介绍k-d树构建算法。
比如我们有二维样本6个,{(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},构建kd树的具体步骤为:

1、 确定:split域=x。具体是:6个数据点在x,y维度上的数据方差分别为39,28.63,所以在x轴上方差更大,故split域值为x;
2、确定:Node-data =(7,2)。具体是:根据x维上的值将数据排序,6个数据的中值(所谓中值,即中间大小的值)为7【这里中位数应该是(5+7)/2=6,但是参考了所有的资料–李航的统计学习方法–都是按照7来的,所以我这里也按照7来进行分区】,所以Node-data域位数据点(7,2)。这样,该节点的分割超平面就是通过(7,2)并垂直于:split=x轴的直线x=7;
3、确定:左子空间和右子空间。具体是:分割超平面x=7将整个空间分为两部分:x<=7的部分为左子空间,包含3个节点={(2,3),(5,4),(4,7)};另一部分为右子空间,包含2个节点={(9,6),(8,1)};
4、用同样的办法划分左子树的节点{(2,3),(5,4),(4,7)}和右子树的节点{(9,6),(8,1)}。最终得到KD树。

2、KD树搜索最近邻

参考《统计学习方法》一书上的内容,再来总结下kd树的最近邻搜索算法:
输入:以构造的kd树,目标点x;
输出:x 的最近邻
算法步骤如下:
在kd树种找出包含目标点x的叶结点:从根结点出发,递归地向下搜索kd树。若目标点x当前维的坐标小于切分点的坐标,则移动到左子结点,否则移动到右子结点,直到子结点为叶结点为止。
以此叶结点为“当前最近点”。
递归的向上回溯,在每个结点进行以下操作:
(a)如果该结点保存的实例点比当前最近点距离目标点更近,则更新“当前最近点”,也就是说以该实例点为“当前最近点”。
(b)当前最近点一定存在于该结点一个子结点对应的区域,检查子结点的父结点的另一子结点对应的区域是否有更近的点。具体做法是,检查另一子结点对应的区域是否以目标点位球心,以目标点与“当前最近点”间的距离为半径的圆或超球体相交:
如果相交,可能在另一个子结点对应的区域内存在距目标点更近的点,移动到另一个子结点,接着,继续递归地进行最近邻搜索;
如果不相交,向上回溯。
当回退到根结点时,搜索结束,最后的“当前最近点”即为x 的最近邻点。
如果实例点是随机分布的,那么kd树搜索的平均计算复杂度是O(logN),这里的N是训练实例树。所以说,kd树更适用于训练实例数远大于空间维数时的k近邻搜索,当空间维数接近训练实例数时,它的效率会迅速下降,一降降到“解放前”:线性扫描的速度。

举个实例体验一下:
我们用3.2.1建立的KD树,
例一:星号表示要查询的点(2.1,3.1)
通过二叉搜索,顺着搜索路径很快就能找到最邻近的叶子节点(2,3),首先假设(2,3)为“当前最近邻点”。
最邻近点肯定位于以查询点为圆心且通过叶子节点的圆域内。为了找到真正的最近邻,还需要进行“回溯”操作:算法沿搜索路径反向查找是否有距离查询点更近的数据点。此例中是由点(2,3)回溯到其父节点(5,4),并判断在该父节点的其他子节点空间中是否有距离查询点更近的数据点,发现该圆并不和超平面y = 4交割,因此不用进入(5,4)节点右子空间中去搜索。
再回溯到(7,2),以(2.1,3.1)为圆心,以0.1414为半径的圆更不会与x = 7超平面交割,因此不用进入(7,2)右子空间进行查找。
至此,搜索路径中的节点已经全部回溯完,结束整个搜索,返回最近邻点(2,3),最近距离为0.1414。

例2 看对B点(2,4.5)找最近邻的过程
通过二叉搜索,顺着搜索路径很快就能找到最邻近的叶子节点(4,7),首先假设(4,7)为当前最近邻点,计算其与目标查找点的距离为3.202。
回溯到(5,4),计算其与查找点之间的距离为3.041,小于3.202,所以“当前最近邻点”变成(5,4)。以目标点(2,4.5)为圆心,以目标点(2,4.5)到“当前最近邻点”(5,4)的距离(即3.041)为半径作圆,如下图左所示。可见该圆和y = 4超平面相交,所以需要进入(5,4)左子空间进行查找,即回溯至(2,3)叶子节点,(2,3)距离(2,4.5)比(5,4)要近,所以“当前最近邻点”更新为(2,3),最近距离更新为1.5。回溯至(7,2),以(2,4.5)为圆心1.5为半径作圆,并不和x = 7分割超平面交割,如下图右所示。至此,搜索路径回溯完。返回最近邻点(2,3),最近距离1.5。

3、KD树预测

有了KD树搜索最近邻的办法,KD树的预测就很简单了,在KD树搜索最近邻的基础上,我们选择到了第一个最近邻样本,就把它置为已选。在第二轮中,我们忽略置为已选的样本,重新选择最近邻,这样跑k次,就得到了目标的K个最近邻,然后根据多数表决法,如果是KNN分类,预测为K个最近邻里面有最多类别数的类别。如果是KNN回归,用K个最近邻样本输出的平均值作为回归预测值。

3、球树

KD树算法虽然提高了KNN搜索的效率,但是在某些时候效率并不高,比如当处理不均匀分布的数据集时,不管是近似方形,还是矩形,甚至正方形,都不是最好的使用形状,因为他们都有角。一个例子如下图:
 
 如果黑色的实例点离目标点星点再远一点,那么虚线圆会如红线所示那样扩大,导致与左上方矩形的右下角相交,既然相 交了,那么就要检查这个左上方矩形,而实际上,最近的点离星点的距离很近,检查左上方矩形区域已是多余。于此我们看见,KD树把二维平面划分成一个一个矩形,但矩形区域的角却是个难以处理的问题。
 为了优化超矩形体导致的搜索效率的问题,人们引入了球树,这种结构可以优化上面的这种问题。
 我们现在来看看球树建树和搜索最近邻的算法。

1、球树的建立

球树,顾名思义,就是每个分割块都是超球体,而不是KD树里面的超矩形体。

我们看看具体的建树流程:

先构建一个超球体,这个超球体是可以包含所有样本的最小球体。
从球中选择一个离球的中心最远的点,然后选择第二个点离第一个点最远,将球中所有的点分配到离这两个聚类中心最近的一个上,然后计算每个聚类的中心,以及聚类能够包含它所有数据点所需的最小半径。这样我们得到了两个子超球体,和KD树里面的左右子树对应。
对于这两个子超球体,递归执行步骤2). 最终得到了一个球树。 可以看出KD树和球树类似,主要区别在于球树得到的是节点样本组成的最小超球体,而KD得到的是节点样本组成的超矩形体,这个超球体要与对应的KD树的超矩形体小,这样在做最近邻搜索的时候,可以避免一些无谓的搜索。
2、 球树搜索最近邻

使用球树找出给定目标点的最近邻方法是首先自上而下贯穿整棵树找出包含目标点所在的叶子,并在这个球里找出与目标点最邻近的点,这将确定出目标点距离它的最近邻点的一个上限值,然后跟KD树查找一样,检查兄弟结点,如果目标点到兄弟结点中心的距离超过兄弟结点的半径与当前的上限值之和,那么兄弟结点里不可能存在一个更近的点;否则的话,必须进一步检查位于兄弟结点以下的子树。
  检查完兄弟节点后,我们向父节点回溯,继续搜索最小邻近值。当回溯到根节点时,此时的最小邻近值就是最终的搜索结果。
  从上面的描述可以看出,KD树在搜索路径优化时使用的是两点之间的距离来判断,而球树使用的是两边之和大于第三边来判断,相对来说球树的判断更加复杂,但是却避免了更多的搜索,这是一个权衡。

4、算法总结

KNN的主要优点有:

1) 理论成熟,思想简单,既可以用来做分类也可以用来做回归
2) 可用于非线性分类
3) 训练时间复杂度比支持向量机之类的算法低,仅为O(n)
4) 和朴素贝叶斯之类的算法比,对数据没有假设,准确度高,对异常点不敏感
5) 由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合
6)该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分
    
KNN的主要缺点有:

1)计算量大,尤其是特征数非常多的时候
2)样本不平衡的时候,对稀有类别的预测准确率低
3)KD树,球树之类的模型建立需要大量的内存
4)使用懒散学习方法,基本上不学习,导致预测时速度比起逻辑回归之类的算法慢
5)相比决策树模型,KNN模型可解释性不强

coding=utf-8

import numpy as np
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import datasets
#抓取训练得样本
iris=datasets.load_iris()
x=iris.data[:,:2]
y=iris.target
#设置knn,k=15,计算周围临近的15个点
k=15
h=0.02#x,y的每一步步长
myknn=KNeighborsClassifier(n_neighbors=k)
myknn.fit(x,y)#自适应训练
#获取模型边界
xmin,xmax=x[:,0].min()-1,x[:,0].max()-1
ymin,ymax=x[:,1].min()-1,x[:,1].max()-1

xx,yy=np.meshgrid(np.arange(xmin,xmax,h),np.arange(ymin,ymax,h))
z=myknn.predict(np.c_[xx.ravel(),yy.ravel()])
z=z.reshape(xx.shape)
plt.pcolormesh(xx,yy,z)
plt.scatter(x[:,0],x[:,1],c=y,edgecolors=‘k’)
###用于画图###
plt.xlim(xx.min(),xx.max())
plt.ylim(yy.min(),yy.max())
plt.plot(x[:,0],x[:,1])
plt.show()
print’模型评分结果:’, myknn.score(x,y)
在这jiqizhimei 里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值