
深度学习/机器学习
ciky奇
这个作者很懒,什么都没留下…
展开
-
【深度学习实战01】——RNN实现二进制加法运算器
网络主要由输入层(两个数构成),中间层(多个神经元构成的隐藏层),以及输出层构成;import copy, numpy as np np.random.seed(0)# compute sigmoid nonlinearity #定义sigmoid函数def sigm...原创 2018-04-17 19:26:01 · 2720 阅读 · 0 评论 -
Caffe学习之——手写数字识别例程
上篇已完成虚拟机下Ubuntu,CPU版的Caffe的安装与编译;在此基础上运行手写数字字体的例程。1.mnist数据集下载;在caffe/data/mnist目录下有get_mnist.sh脚本文件,在终端运行后会完成如下文件的下载:将终端定位到Caffe根目录cd ~/caffe下载MNIST数据库并解压缩,生成四个文件./data/mnist/get_mnist.sh t10k-ima...原创 2018-04-22 22:03:43 · 1106 阅读 · 1 评论 -
【深度学习样本准备系列】——标注工具:精灵标注助手(Colabeler)使用教程
这篇文章是看到其他博主 https://blog.csdn.net/youmumzcs/article/details/79657132 推荐的,个人感觉不错,比自己编译的界面看上去要舒服,推荐下:首先官网下载-精灵标注助手精灵标注助手目前支持Windows/Mac/Linux平台,大家根据自己的系统下载相对应的版本,Mac的话可以到MacStore中搜索colabeler下载即可。相比于Labe...转载 2018-04-19 09:06:05 · 19522 阅读 · 15 评论 -
py-faster-rcnn + cpu安装及训练自己的数据集
文章转自:https://blog.csdn.net/zhang_shuai12/article/details/52295438本文安装python版本的faster-rcnn项目。 matlab版本请移步:https://github.com/ShaoqingRen/faster_rcnn python版本项目主页:https://github.com/rbgirshick/py-fast...转载 2018-04-20 08:44:30 · 2123 阅读 · 0 评论 -
【深度学习Faster-RCNN】深刻解读Faster R-CNN
文章剖析很全面,转自厉害的楼主大大:https://zhuanlan.zhihu.com/p/31426458经过R-CNN和Fast R-CNN的积淀,Ross B. Girshick在2016年提出了新的Faster R-CNN,在结构上,Faster R-CNN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rec...转载 2018-04-20 15:19:04 · 3986 阅读 · 0 评论 -
【深度学习 SS】Selective Search原理剖析
参考:https://www.cnblogs.com/zhao441354231/p/5941190.html学习RCNN时对SS工作原理比较好奇,搜索网上资料,大意如下:项目地址: http://disi.unitn.it/~uijlings/MyHomepage/index.php#page=projects1这是一篇2013年发表的文章,应该是下面2011年ICCV会议论文的扩展:Van, ...转载 2018-04-20 16:10:36 · 2664 阅读 · 1 评论 -
【深度学习实战03】——YOLO tensorflow运行及源码解析
本文章是深度学习实战系列第三讲文章,以运行代码+源码分析 为主;转载请注明引用自:首先代码下载链接是:https://github.com/hizhangp/yolo_tensorflow下载完后建议好好读下里面的README部分内容;该代码主要是利用训练号模型得到的权重参数,来对输入图像或视频做目标检测的;如果想要自己训练模型得到权重参数的话,需要用darknet这个框架做训练。其中YOLO_s...原创 2018-05-11 14:54:34 · 10541 阅读 · 64 评论 -
【深度学习实战02】——VGG网络提取输入图像的特征并显示特征图
本文是深度学习实战系列文章,主要是利用官网VGG 19层网络训练得到模型产生的weight和bias数值,对输入的任意一张图像进行前向训练,从而得到特征图。一. 代码以下是对应代码:# coding: utf-8import scipy.ioimport numpy as np import os import scipy.misc import matplotlib.pyplot a...原创 2018-05-05 17:49:50 · 25037 阅读 · 41 评论 -
Linux添加PYTHONPATH方法以及3种修改环境变量方法
在用Linux(OS:Centos 7.2)时看到有一行代码是:export PYTHONPATH=$PYTHONPATH:/home/usrname/models:/home/usrname/models/one意思是将models以及其目录下的one文件夹加入系统环境中。百度了发现环境变量有三种修改方式。以上属于下述中的第一种。Linux下设置环境变量有三种方法,一种用于当前终端,一种用于当前...转载 2018-03-27 16:33:49 · 104786 阅读 · 3 评论 -
Caffe学习之——虚拟机下Ubuntu16.04 安装caffe教程
我的电脑是win10 64位,i5的笔记本;安装了虚拟机,并在虚拟机下装了Ubuntu16.04系统。本文介绍在虚拟机的linux系统下安装caffe的过程。1.安装caffe;在终端复制如下命令即可,自动下载安装caffe;git clone https://github.com/BVLC/caffe.git2.安装必要的相关依赖项;sudo apt-get install git cmake ...原创 2018-04-22 20:57:18 · 6274 阅读 · 10 评论 -
深度学习——NIN
NIN:Network in Network网络(NiN)作用是提高了CNN的局部感知区域(Bottleneck layer瓶颈层)1X1的卷积层,做降维度或升维度;他的核大小为1X1(深度待定义)降维例子:如输入为8X1X 1X5(输入核为8,输出核为5)意义:做特征的重新整合,如输入的8层比较稀疏,可输出5层比较密集的特征;降维为后续的卷积层做准备;原创 2017-09-17 15:44:59 · 602 阅读 · 0 评论 -
深度学习——VGG网络
VGG网络:ImageNet-2104竞赛第二,是网络改造的首选基础网络(图片描述,图片问答);一个大的卷积核分解为连续多个小卷积核;应用了核分解的思想:将7X7核->3个3X3核(由ReLU连接)对应的参数数量由49通道数变为27通道数;优点是减少参数,显存可用的容量对应就多了,降低了计算,增加了深度;它继承了AlexNet结构的特点:简单和有效;他的16层网络应用性原创 2017-09-18 20:20:42 · 1316 阅读 · 0 评论 -
深度学习——GoogleLeNet网络
ImageNet-2014竞赛第一含有四个版本:Inception V1 -> Inception V2 -> Inception V3 -> Inception V4特点:减少参数,降低参数;增加宽度,深度;原创 2017-09-18 20:44:56 · 5692 阅读 · 1 评论 -
RCNN学习笔记(0):rcnn简介
reference link: http://blog.csdn.NET/shenxiaolu1984/article/details/51066975Region CNN(RCNN)可以说是利用深度学习进行目标检测的开山之作。作者Ross Girshick多次在PASCAL VOC的目标检测竞赛中折桂,2010年更带领团队获得终身成就奖,如今供职于Facebook旗下的转载 2017-09-12 22:34:30 · 321 阅读 · 0 评论 -
import cv2问题(Anancoda与非Anaconda方式)
问题如下:>>> import cv2Traceback (most recent call last): File "", line 1, in import cv2ImportError: DLL load failed: %1 不是有效的 Win32 应用程序。以下是非Anaconda方式安装Python2.7,及安装对应的python包;本原创 2017-11-13 20:28:46 · 27960 阅读 · 9 评论 -
tensorboard学习——tensorboard无法打开问题
用tensorboard打开终端端口加载训练生成的log文件;会生成链接,用于copy到浏览器打开;用tensorboard打开一个log都有链接了,可链接复制到网页窗口一直打不开?后来发现Chrome浏览器版本太低,后来更新到V60以上就没问题了,并且我把tensorflow也更新到1.3.0了。copy链接到Chrome浏览器就出现如下界面。或...原创 2018-01-13 23:11:34 · 17224 阅读 · 20 评论 -
正则化方法:L1和L2 regularization、数据集扩增、dropout
转载自:http://blog.csdn.net/u012162613/article/details/44261657本文是《Neural networks and deep learning》概览 中第三章的一部分,讲机器学习/深度学习算法中常用的正则化方法。正则化方法:防止过拟合,提高泛化能力在训练数据不够多时,或者overtraining时,常常会导致o转载 2018-01-22 23:56:18 · 292 阅读 · 0 评论 -
TensorFlow学习——MNIST read_data_sets一直报连接超时
在学习《TensorFlow实战——黄文坚》中3.2小节中需要载入MNIST数据集,运行:from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/",one_hot=True) 出现以下错误信息:URLError: urlopen error原创 2018-01-18 22:32:29 · 7330 阅读 · 2 评论 -
RNN反向传播公式推导
转载自:https://zhuanlan.zhihu.com/p/28806793Recurrent Neural Network(RNN)循环神经网络,循环的意思就是同一网络结构不停的重复。相比较普通的神经网络,循环神经网络的不同之处在于,它在神经元之间还有相互的连接。在隐层上增加了一个反馈连接,也就是说,RNN隐层当前时刻的输入有一部分是前一时刻的隐层输出,这使得RNN可以通过循环反馈连接保留...原创 2018-03-13 18:34:01 · 10583 阅读 · 1 评论 -
【深度学习SSD】——深刻解读SSD tensorflow及源码详解
本文主要针对SSD的tensorflow框架下的实现的源码解读即对网络模型的理解。【前言】首先在github上下载tensorflow版的SSD repository:https://github.com/balancap/SSD-Tensorflow同时附上论文地址:SSD 论文下载解压SSD-Tensorflow-master.zip 到自己工作目录下。S...原创 2018-05-22 15:05:07 · 40762 阅读 · 28 评论 -
【深度学习YOLO V1】深刻解读YOLO V1(图解)
参考:http://blog.csdn.net/u011534057/article/details/51244354论文下载:http://arxiv.org/abs/1506.02640 darknet版的代码下载:https://github.com/pjreddie/darknettensorflow版本的代码下载:https://github.com/hizhangp/yolo_tens...转载 2018-05-08 10:43:24 · 103047 阅读 · 89 评论 -
深度学习资料链接整理(囊括ML,DL,CV团队,网站,优秀博客,实验室等大堆资料集)
下面内容是转自:https://blog.csdn.net/mydear_11000/article/details/50864405要些牛逼的话,估计这些得看完了就成仙了!Deep Learning(深度学习)ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二Bengio团队的deep ...转载 2018-07-05 10:06:25 · 2271 阅读 · 0 评论 -
UnrecognizedFlagError: Unknown command line flag 'f'
UnrecognizedFlagError: Unknown command line flag 'f' jupyter 下载cifar数据问题:添加 tf.app.flags.DEFINE_string('f', '', 'kernel')完美解决!!!cifar10.maybe_download_and_extract()代码实例如下,这样就能正常运行了。 ...原创 2018-07-20 09:02:25 · 2310 阅读 · 0 评论 -
【何之源-21个项目玩转深度学习】——Chapter2-2.1.3 Tensorflow的数据读取机制
何之源,知乎上的一个大大,推出了一本TF的实践书,本文是在看其资料时做的源码分析。首先贴出其代码:# coding:utf-8import osif not os.path.exists('read'): os.makedirs('read/')# 导入TensorFlowimport tensorflow as tf # 新建一个Sessionwith tf.S...原创 2018-07-20 13:41:01 · 1405 阅读 · 0 评论 -
【何之源-21个项目玩转深度学习】——Chapter2-2.1.2 CIFAR-10数据下载
本文主要讲用tensorflow框架下python代码实现CIFAR-10数据的下载;主代码如下:# coding:utf-8# 引入当前目录中的已经编写好的cifar10模块import cifar10import tensorflow as tf# tf.app.flags.FLAGS是TensorFlow内部的一个全局变量存储器,同时可以用于命令行参数的处理FLAGS...原创 2018-07-20 15:41:52 · 1030 阅读 · 3 评论 -
【何之源-21个项目玩转深度学习】——Chapter2-2.1.4 CIFAR-10二进制数据集保存为图片形式
关于CIFAR-10数据集下载请参考:由于下载解压得到的数据集是二进制形式的,本文讲的是将bin形式数据转为tensorflow能识别的tensor形式的,以及保存成可视化的图像文件;主函数cifar10_extract.py的内容如下:#coding: utf-8# 导入当前目录的cifar10_input,这个模块负责读入cifar10数据import cifar10_inp...原创 2018-07-20 19:02:03 · 1150 阅读 · 0 评论 -
MV-YOLO: Motion Vector-aided Tracking by Semantic Object Detection论文解读
论文题目:MV-YOLO: Motion Vector-aided Tracking by Semantic Object Detection论文发布时间:CVPR 2018.6论文下载地址:https://arxiv.org/abs/1805.00107摘要——目标跟踪是许多视觉分析系统的基石。虽然最近几年在该领域已经取得了相当大进展,但要想实现现实视频中目标的鲁棒,高效和高精度的跟...翻译 2018-07-20 22:08:35 · 1672 阅读 · 3 评论 -
【深度学习-微调模型】使用Tensorflow Slim fine-tune(微调)模型
本文主要讲解在现有常用模型基础上,如何微调模型,减少训练时间,同时保持模型检测精度。首先介绍下Slim这个Google公布的图像分类工具包,可在github链接:modules and examples built with tensorflow 中找到slim包。上面这个链接目录下主要包含:official models(这个是用Tensorflow高层API做的例子模型集,建议初学...原创 2018-08-01 16:08:17 · 10686 阅读 · 32 评论 -
tf.Graph().get_operations()
在导入训练好的模型(如我导入Inception模型tensorflow_inception的图结构和网络权重pb文件),一个.pb格式文件,包含了模型的网络结构和训练得到的参数数据;导入该模型如果想找到特定的operation那么该怎么办呢?tensorflow+inceptionv3图像分类网络结构的解析与代码实现在学习deepdream时(官方代码)时有如下这段代码:# 导入要用...原创 2018-08-09 09:25:01 · 5573 阅读 · 0 评论 -
Python 百度图片批量爬取(深度学习训练数据集准备)
首先讲下爬取网站图片是动态加载的,以百度图片为例,打开百度图片,我搜索的关键字是“猫”:http://image.baidu.com/search/index?tn=baiduimage&ps=1&ct=201326592&lm=-1&cl=2&nc=1&ie=utf-8&word=猫在看到搜索出的图片的网页按F12,出现下图;切换右侧标签到...原创 2018-07-04 23:53:00 · 11779 阅读 · 25 评论 -
windows10 64位下安装pycocotools, imgaug问题
在尝试运行Mask-RCNN时,需要下载一堆的库文件。其中Mask-RCNN的仓库地址:Mask-RCNN在运行samples中的demo.ipynb过程中,需要import imgaug 这个用于数据增强的库文件。解决方法是先下载这个库文件(imgaug地址:imgaug),我将其放在anaconda目录下,然后运行如下命令——python setup.py sdist && s...原创 2018-06-20 14:30:35 · 8580 阅读 · 14 评论 -
【深度学习 学习率,优化器】——深刻解读训练网络时各种学习率,优化器的区别,learning rate, Momentum
机梯度下降及各种更新方法普通更新 最简单的更新形式是沿着负梯度方向改变参数(因为梯度指向的是上升方向,但是我们通常希望最小化损失函数)。假设有一个参数向量x及其梯度dx,那么最简单的更新的形式是:# 普通更新x += - learning_rate * dx其中learning_rate是一个超参数,它是一个固定的常量。当在整个数据集上进行计算时,只要学习率足够低,总是能在损失函数上...原创 2018-06-25 23:28:32 · 6103 阅读 · 2 评论 -
【深度学习实战04】——SSD tensorflow图像和视频的目标检测
关于SSD的源代码详细讲解,请参考文章:https://blog.csdn.net/c20081052/article/details/80391627 代码详解本文是实战系列的第四篇,逼自己抽空写篇博客,把之前运行的程序po出来,供需要的人参考。下载 SSD-Tensorflow-master 解压找到里面notebooks文件夹,本文主要针对这个文件夹下提供的事例做讲解;主要...原创 2018-05-25 18:58:00 · 9123 阅读 · 71 评论 -
【深度学习样本准备系列】——标注工具:labelImg工具安装使用
首先工具链接:https://github.com/csq20081052/labelImg 戳这里:点击打开链接该工具很方便,能够加载图像与文件夹,可自行定义图像类别(原工具已经预先分了常用的人,车,猫……等类别);链接中支持多种方式的安装使用方法,本文主要讲在win64下 anaconda方式的安装与使用。本人安装内容如下:Anaconda版本:Anaconda3-4.2.0-W...原创 2018-06-04 15:21:05 · 5874 阅读 · 2 评论 -
鱼眼摄像头 实时动、静目标的检测,跟踪,分类
论文:《Real-time Detection, Tracking, and Classification of Moving and Stationary Objects using Multiple Fisheye Images》作者:Iljoo Baek∗, Albert Davies∗, Geng Yan, and Ragunathan (Raj) Rajkumar发表日期:2018.3.1...翻译 2018-06-15 13:43:45 · 7230 阅读 · 8 评论 -
【深度学习R-FCN】——深刻解读R-FCN网络结构
本文参考:https://blog.csdn.net/kekong0713/article/details/69919093作者链接:代季峰,何恺明,孙剑论文链接:论文传送门代码链接:matlab版,python版方法概括R-FCN解决问题——目标检测整个R-FCN的结构一个base的conv网络如ResNet101, 一个RPN(Faster RCNN来的),一个position sensiti...转载 2018-06-01 08:54:31 · 5136 阅读 · 0 评论 -
Lanenet 车道线检测网络模型学习(论文解读+官方模型)
本文讲解的是用于车道线检测的一个网络结构叫lanenet,转载请备注,多谢哈|!2018.2发表出来的,文章下载地址:https://arxiv.org/abs/1802.05591github上代码:https://github.com/MaybeShewill-CV/lanenet-lane-detection官方训练的模型文件(我下载的官方模型是2019.6.26...翻译 2018-06-08 18:25:23 · 45472 阅读 · 66 评论 -
【深度学习MobileNet】——深刻解读MobileNet网络结构
本文转载自:引言卷积神经网络(CNN)已经普遍应用在计算机视觉领域,并且已经取得了不错的效果。图1为近几年来CNN在ImageNet竞赛的表现,可以看到为了追求分类准确度,模型深度越来越深,模型复杂度也越来越高,如深度残差网络(ResNet)其层数已经多达152层。 图1 CNN在ImageNet上的表现(来源:CVPR2017) 然而,在某些真实的应用场景如移动或者嵌入式设备,如此大而复杂的模型...转载 2018-06-15 12:49:48 · 138502 阅读 · 7 评论 -
Restricted Deformable Convolution based Road Scene Semantic Segmentation Using Surround View Cameras
论文标题:Restricted Deformable Convolution based Road Scene Semantic Segmentation Using Surround View Cameras作者:Liuyuan Deng, Ming Yang, Hao Li, Tianyi Li, Bing Hu, Chunxiang Wang发表时间:2018.1.3...翻译 2018-08-13 13:46:25 · 1228 阅读 · 0 评论 -
skimage图像处理库
深度学习的一些模型中常常需要import skimage,以下是转自他人博客的内容,觉得写得很不错参考:https://blog.csdn.net/thesby/article/details/51340894skimage是和scipy、numpy可以完美结合的,那么就可以很好的使用numpy了。原文作者教大家怎么使用help来查看skimage中的各个包以及各个函数,需要大家自己花时间去阅读源...原创 2018-06-26 10:19:56 · 3353 阅读 · 0 评论