【Codeforces 364E】Empty Rectangle

给一个 n ∗ m n*m nm的01矩阵,求其中恰含 K K K个1的子矩阵的方案数。
1 ≤ n , m ≤ 2500 , 0 ≤ K ≤ 6 1\leq n,m \leq 2500, 0 \leq K \leq 6 1n,m2500,0K6


做这个题时完全没有往分治的方向想。
面对这种矩阵的分治,不妨像K-D Tree那样行列交替切割。边界条件很容易确定。
这样一来,恰位于两半边的子矩阵全部处理完毕,考虑处理跨过切割线的子矩阵(以横着切割为例)。
在这里插入图片描述
我们枚举子矩阵的左右两端点(分别记作 i , j i,j i,j),令 f [ 0 ] [ k ] f[0][k] f[0][k]为矩形 [ ( f [ 0 ] [ k ] , i ) , ( m i d , j ) ] [(f[0][k],i), (mid,j)] [(f[0][k],i),(mid,j)]满足其1的个数小于k的最小纵坐标, f [ 1 ] [ k ] f[1][k] f[1][k]为矩形 [ ( i , m i d + 1 ) , ( f [ 1 ] [ k ] , j ) ] [(i,mid+1), (f[1][k],j)] [(i,mid+1),(f[1][k],j)]满足其1的个数小于k的最大纵坐标。则该情形下的答案为:
∑ k = 0 K ( f [ 0 ] [ k ] − f [ 0 ] [ k + 1 ] ) ∗ ( f [ 1 ] [ K − k + 1 ] [ K − k ] ) \sum_{k=0}^K(f[0][k]-f[0][k+1])*(f[1][K-k+1][K-k]) k=0K(f[0][k]f[0][k+1])(f[1][Kk+1][Kk])
在这里插入图片描述
考虑如何求 f f f。发现当 i i i固定时, f [ 0 ] , f [ 1 ] f[0],f[1] f[0],f[1]均有单调性。于是,每一次移动 j j j时,依次更新 f f f中的元素即可。
枚举 i , j i,j i,j的复杂度为 O ( n 2 ) O(n^2) O(n2) O ( m 2 ) O(m^2) O(m2),故处理一次切割线上的信息为 O ( n m k ) O(nmk) O(nmk),总的时间复杂度为 O ( n m k log ⁡ 2 n ) O(nmk\log_2n) O(nmklog2n)


#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int mn = 2505;
int a[mn][mn], n, m, K;
char s[mn];
ll f[2][10], ans;
inline int num(int x1, int y1, int x2, int y2) {return a[x2][y2] - a[x1][y2] - a[x2][y1] + a[x1][y1];}
void solve(int x1, int y1, int x2, int y2, bool flg)
{
    if(x1 == x2 || y1 == y2) return;
    if(x1 + 1 == x2 && y1 + 1 == y2) {ans += (num(x1, y1, x2, y2) == K); return;}
    if(flg)
    {
        int mid = (x1 + x2) >> 1;
        solve(x1, y1, mid, y2, 0), solve(mid, y1, x2, y2, 0);
        for(int i = y1; i < y2; i++)
        {
            f[0][0] = f[1][0] = mid;
            for(int j = 1; j <= K + 1; j++)
                f[0][j] = x1, f[1][j] = x2;
            for(int j = i + 1; j <= y2; j++)
            {
                for(int k = 1; k <= K + 1; k++)
                {
                    while(num(f[0][k], i, mid, j) >= k) ++f[0][k];
                    while(num(mid, i, f[1][k], j) >= k) --f[1][k];
                }
                for(int k = 0; k <= K; k++)
                    ans += (f[0][k] - f[0][k + 1]) * (f[1][K - k + 1] - f[1][K - k]);
            }
        }
    }
    else
    {
        int mid = (y1 + y2) >> 1;
        solve(x1, y1, x2, mid, 1), solve(x1, mid, x2, y2, 1);
        for(int i = x1; i < x2; i++)
        {
            f[0][0] = f[1][0] = mid;
            for(int j = 1; j <= K + 1; j++)
                f[0][j] = y1, f[1][j] = y2;
            for(int j = i + 1; j <= x2; j++)
            {
                for(int k = 1; k <= K + 1; k++)
                {
                    while(num(i, f[0][k], j, mid) >= k) ++f[0][k];
                    while(num(i, mid, j, f[1][k]) >= k) --f[1][k];
                }
                for(int k = 0; k <= K; k++)
                    ans += (f[0][k] - f[0][k + 1]) * (f[1][K - k + 1] - f[1][K - k]);
            }
        }
    }
}
int main()
{
    scanf("%d%d%d", &n, &m, &K);
    for(int i = 1; i <= n; i++)
    {
        scanf("%s", s + 1);
        for(int j = 1; j <= m; j++)
            a[i][j] = s[j] - '0', a[i][j] += a[i-1][j] + a[i][j-1] - a[i-1][j-1];
    }
    solve(0, 0, n, m, 0);
    printf("%I64d\n", ans);
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值