【原创】积性函数和狄利克雷卷积学习笔记 未完成

狄利克雷卷积和积性函数

〇、说在前面

作为杜教筛,FWT等等等的前置知识。
工作量终于比较小一些了。

一、一些定义

1.数论函数

对于函数 y = f ( x ) y=f(x) y=f(x),如果定义域为 x ∈ Z + x\in Z^+ xZ+,值域为 f ( x ) ∈ C f(x)\in C f(x)C,则称f(x)为数论函数

个人理解:数论中只有整数(基本上都是非负)嘛,所以数论函数就是整数集合(此处为正整数)的一个函数嘛。
数论函数是不是可以类比于数列?

2.积性函数与完全积性函数

(1)定义

对于数论函数 y = f ( x ) y=f(x) y=f(x) 若 ∀ x 1 , x 2 ∈ Z + & gcd ⁡ ( x 1 , x 2 ) = 1 , f ( x 1 × x 2 ) = f ( x 1 ) × f ( x 2 ) 并 且 f ( 1 ) = 1 若\forall x_1,x_2 \in Z^+ \And \gcd(x_1, x_2)=1, f(x_1\times x_2)=f(x_1)\times f(x_2)并且f(1)=1 x1,x2Z+&gcd(x1,x2)=1f(x1×x2)=f(x1)×f(x2)f(1)=1,则称f(x)为积性函数
也就是说对于数论函数f(x),如果f(x)=1,并且任意两个互质的正整数的函数值的乘积等于这两个数的乘积的函数值。

(吐槽)这句话(虽然都是我自己说的)说的还是挺好玩的嘛,函数值的乘积,乘积的函数值。
话说回来……
我是不是完全搞错了引用块的用途啊。

特别的,如果说一个数论函数 y = f ( x ) y=f(x) y=f(x)满足 ∀ x 1 , x 2 ∈ Z + , f ( x 1 × x 2 ) = f ( x 1 ) × f ( x 2 ) \forall x_1,x_2 \in Z^+, f(x_1\times x_2)=f(x_1)\times f(x_2) x1,x2Z+,f(x1×x2)=f(x1)×f(x2),则称 f ( x ) f(x) f(x)完全积性函数

(2)举例
①(普通)积性函数
名称符号解释
除数函数 σ k ( n ) \sigma_k(n) σk(n) σ k ( n ) = ∑ d ∣ n d k \sigma_k(n)=\sum_{d\mid n}d^k σk(n)=dndk σ \sigma σ为小写sigma
因数个数函数 τ ( n ) \tau(n) τ(n) τ ( n ) = ∑ d ∣ n 1 \tau(n)=\sum_{d\mid n}1 τ(n)=dn1,就是除数函数的k取0时的情况, τ \tau τ为小写tau
因数和函数 σ ( n ) \sigma(n) σ(n) σ ( n ) = ∑ d ∣ n d \sigma(n)=\sum_{d\mid n}d σ(n)=dnd,就是除数函数的k取1时的情况
欧拉函数 φ ( n ) \varphi(n) φ(n) φ ( n ) = ∑ i = 1 n [ gcd ⁡ ( i , n ) = 1 ] \varphi(n)=\sum_{i=1}^n[\gcd(i,n)=1] φ(n)=i=1n[gcd(i,n)=1] φ \varphi φ为小写phi,KaTeX中是\varphi
莫比乌斯函数 μ ( n ) \mu(n) μ(n) μ ( n ) = { 1 , n = 1 ( − 1 ) t , n = ∏ p i   i s   a   p r i m e 1 ≤ i ≤ t p i 0 , o t h e r w i s e 意 会 一 下 就 好 了 , 今 天 μ ( n ) 不 是 主 角 \mu(n)=\left\{\begin{aligned}&1,n=1\\&(-1)^t,n=\prod_{p_{i} \, is \, a \,prime}^{1\leq i \leq t}p_i \\&0,otherwise\\ \small& 意会一下就好了,今天\mu(n)不是主角 \end{aligned}\right. μ(n)=1,n=1(1)t,n=piisaprime1itpi0,otherwiseμ(n)
②完全积性函数
名称符号解释
元函数 e ( n ) e(n) e(n) e ( n ) = [ n = 1 ] e(n)=[n=1] e(n)=[n=1]
幂函数 i d k ( n ) id_k(n) idk(n) i d k ( n ) = n k id_k(n)=n^k idk(n)=nk
恒等函数 i d ( n ) id(n) id(n) i d ( n ) = n , 就 是 k = 1 的 幂 函 数 id(n)=n,就是k=1的幂函数 id(n)=n,k=1
单位函数 I ( n ) I(n) I(n) I ( n ) = 1 , 就 是 i d 0 ( n ) I(n)=1,就是id_0(n) I(n)=1id0(n)
(3)性质

不想引入过多结论。

对于积性函数 y = f ( n ) y=f(n) y=f(n), ∀ n = ∏ i = 1 t p i k i , f ( n ) = ∏ i = 1 t f ( p i k i ) \forall n=\prod_{i=1}^{t}{p_i^{k_i}},f(n)=\prod_{i=1}^{t}{f(p_i^{k_i})} n=i=1tpiki,f(n)=i=1tf(piki);特别的,对于完全积性函数, f ( n ) = ∏ i = 1 t f ( p i k i ) = ∏ i = 1 t f ( p i ) k i f(n)=\prod_{i=1}^{t}{f(p_i^{k_i})}=\prod_{i=1}^{t}{f(p_i)^{k_i}} f(n)=i=1tf(piki)=i=1tf(pi)ki

应该还是比较显然吧。
就是把一个数质因数分解,原数的积性函数值等于各质因子的若干次方的积性函数值的和。

二、狄利克雷卷积

1.定义

对于数论函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x),定义一种二元运算(就是在两个东西之间进行运算的符号)叫做狄利克雷卷积,得到的还是一个数论函数,形如 ( f ∗ g ) ( n ) (f*g)(n) (fg)(n)
然后: f ∗ g = ( f ∗ g ) ( n ) = ∑ d ∣ n f ( d ) ⋅ g ( n d ) \large f*g=(f*g)(n)=\sum_{d|n}{f(d)\cdot g(\frac{n}{d})} fg=(fg)(n)=dnf(d)g(dn)

然后注意区分乘法 × \times ×和卷积 ∗ *

2.性质

交换律 f ∗ g = g ∗ f f*g=g*f fg=gf,这个就使用显然法显过去吧。
结合律 ( f ∗ g ) ∗ h = f ∗ ( g ∗ h ) (f∗g)∗h=f∗(g∗h) (fg)h=f(gh),很简单,稍微证一下:

左 边 = ( ∑ d ∣ n f ( d ) ⋅ g ( n d ) ) ∗ h ( n ) 左边=\left(\sum_{d|n}{f\left(d\right)\cdot g\left(\frac{n}{d}\right)}\right)*h(n) =dnf(d)g(dn)h(n)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值