Description
某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏。游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞。绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞。为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数。
Input
第一行包含一个整数n,表示地上有n个装置,装置的编号从0到n-1,接下来一行有n个正整数,依次为那n个装置的初始弹力系数。第三行有一个正整数m,接下来m行每行至少有两个数i、j,若i=1,你要输出从j出发被弹几次后被弹飞,若i=2则还会再输入一个正整数k,表示第j个弹力装置的系数被修改成k。对于20%的数据n,m<=10000,对于100%的数据n<=200000,m<=100000
Output
对于每个i=1的情况,你都要输出一个需要的步数,占一行。
Sample Input
4
1 2 1 1
3
1 1
2 1 1
1 1
Sample Output
2
3
Solution
Link−Cut−Tree
的模板题,当然这个模板没有那么裸,操作也没有那么多啦……
话说
LCT
确是一个很恶心的板子,我曾以为平衡树就是极致的恶心了,没想到
LCT
刷新了我对代码的印象的上界(曾经是二逼平衡树),但是弹飞绵羊不是很长(
130
左右),真正恶心的板子在这里
Sone1
还没写,估计有
200+
回到弹飞绵羊,我们可以定义一个虚拟节点
n+1
,表示被弹飞。而如果节点
i
能够弹到
那么显然,修改操作就是修改父亲,查询操作就是查询深度。而修改父亲和查询深度都是 LCT 很拿手的,我们就这样做出来了。
PS:
查询深度时,先
Access(x)
,让
n+1
到
x
变成一棵
然后就是代码了,这次加了注释,就可以看懂了~
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 200005
int n,m,K[N];
char S[10];
namespace LCT
{
int cnt,ch[N][2],fa[N],dt[N],siz[N];
bool rv[N],tp[N];
//节点个数 儿子 父亲 翻转懒标记 数据 是否为根
inline void Push_Down(int x)//懒标记下传
{
if(rv[x])
{
rv[x]=0;
swap(ch[x][0],ch[x][1]);
if(ch[x][0])rv[ch[x][0]]^=1;
if(ch[x][1])rv[ch[x][1]]^=1;
}
}
inline void Push_Up(int x)//标记上传
{
siz[x]=siz[ch[x][0]]+siz[ch[x][1]]+1;
}
inline void Rotate(int x)//万能旋转
{
int y=fa[x],z=fa[fa[x]];
if(!y||tp[x])return;
int wh=(x==ch[y][1]);
Push_Down(x);
ch[y][wh]=ch[x][!wh];
if(ch[y][wh])fa[ch[y][wh]]=y;
ch[x][!wh]=y;
fa[y]=x;
if(!tp[y])ch[z][y==ch[z][1]]=x;
fa[x]=z;
tp[x]=tp[y],tp[y]=0;
rv[x]=rv[y],rv[y]=0;
Push_Up(y);
}
inline void Splay(int x)//翻转至根
{
Push_Down(x);Push_Up(x);
for(;!tp[x];Rotate(x))
{
int y=fa[x];
if(!tp[y])
{
int z=fa[y];
if((x==ch[y][1])==(y==ch[z][1]))Rotate(y);
else Rotate(x);
}
}
Push_Down(x);Push_Up(x);
}
inline int Access(int x)//LCT的象征
{
int last=0;
while(x)
{
Splay(x);
if(ch[x][1])tp[ch[x][1]]=1;
ch[x][1]=last;
if(last)tp[last]=0;
Push_Up(x);
last=x;
x=fa[x];
}
return last;
}
inline void Beroot(int x)//换根
{
Access(x);
Splay(x);
rv[x]^=1;
Push_Down(x);
Push_Up(x);
}
inline void Link(int u,int v)//链接(u->v)
{
Beroot(u);
Access(v);
fa[u]=v,tp[u]=1;
}
inline void Cut(int u,int v)//删除(u->v)
{
Beroot(u);
Splay(v);
if(fa[v]==u)
fa[v]=0;
else
fa[u]=ch[v][0]=0,tp[u]=1;
Push_Up(v);Push_Up(u);
Push_Up(v);Push_Up(u);
}
inline void Link_Cut(int u,int v,int w)//删除(u->v)并链接(u->w)
{
Cut(u,v);
Link(u,w);
}
inline int Find_Root(int x)//找根
{
Access(x);
Splay(x);
while(ch[x][0])
{
Push_Down(x);
x=ch[x][0];
}
return x;
}
inline bool Query_Linked(int u,int v)//判断是否连通
{
return Find_Root(u)==Find_Root(v);
}
inline int Query_Deep(int x)//求深度
{
Access(x);
Splay(x);
return siz[x]-1;
}
inline void Init(int n)//初始化
{
cnt=n;
memset(ch,0,sizeof(ch));
memset(fa,0,sizeof(fa));
memset(dt,0,sizeof(dt));
memset(tp,1,sizeof(tp));
memset(rv,0,sizeof(rv));
for(int i=1;i<=n;i++)
siz[i]=1;
}
}
int Read()
{
int p=0;char c=getchar();
while(c>'9'||c<'0')c=getchar();
while(c>='0'&&c<='9')p=p*10+c-'0',c=getchar();
return p;
}
void Solve()
{
for(int i=1;i<=m;i++)
{
int opt;
opt=Read();
if(opt==1)
{
int p=Read();
printf("%d\n",LCT::Query_Deep(p+1));
}
else
{
int a=Read(),b=Read();
a++;
LCT::Link_Cut(a,min(a+K[a],n+1),min(a+b,n+1));
LCT::Beroot(n+1);
K[a]=b;
}
}
}
void Init()
{
n=Read();
LCT::Init(n+1);
for(int i=1;i<=n;i++)
{
K[i]=Read();
LCT::Link(i,min(i+K[i],n+1));
}
LCT::Beroot(n+1);
m=Read();
}
int main()
{
Init();
Solve();
}