石子合并

问题 E(1141): 【基础算法】石子合并-版本1

时间限制: 1 Sec   内存限制: 64 MB
提交: 315   解决: 151
[ 提交][ 状态][ 我的提交]

题目描述

设有n堆石子排成一排,其编号为1,2,3,…,n。每堆石子有一定的数量,例如: 13 7 8 16 21 4 18 现要将n堆石子归并为一堆。归并的过程为每次只能将相邻的两堆石子堆成一堆,这样经过n-1次归并之后最后成为一堆。对于上面的7堆石子,可以有多种方法归并成一堆。其中的2种方法入下图:   归并的代价是这样定义的:将两堆石子归并为一堆时,两堆石子数量的和称为归并2堆石子的代价。如上图中,将13和7归并为一堆的代价为20。归并的总代价指的是将沙子全部归并为一堆沙子的代价的和。如上面的2种归并方法中, 第1种的总代价为 20+24+25+44+69+87 = 267 第2种的总代价为 15+37+22+28+59+87 = 248 由此可见,不同归并过程得到的总的归并代价是不一样的。 当n堆石子的数量给出后,找出一种合理的归并方法,使总的归并代价为最小。

输入

第1行:1个整数n(1<=n<=100),表示石子的数量第

2行:n个用空格分开的整数,每个整数均小于10000,表示各堆石子的数量。

输出

第1行:1个整数,表示最小的归并代价

第2行:用括号表示的归并顺序。加括号的要求见样例。如果只有1堆石子,输出时不要加括号。

样例输入

 (如果复制到控制台无换行,可以先粘贴到文本编辑器,再复制)

3
13 7 8

样例输出

43
(13)((7)(8))

提示

————————————————分析——————————————————

用a[i]表示石子,w[i]表示合并到i号石子的花费,f[i][j]表示石子合并的最小值.
则状态转移方程式为: f[i][mn]=min1+w[mn]-w[i-1];
然后用数组把下标存下来,然后用递归输出
———————————————代码实现——————————————————

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<climits>
using namespace std;
int n,f[103][103],a[103],min1=INT_MAX,op[103][103],w[103];
void print(int i,int j)
{
if(i==j)
{
printf("%d",a[i]);
return;
}
printf("(");
print(i,op[i][j]);
printf(")(");
print(op[i][j]+1,j);
printf(")");
return;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]),w[i]+=w[i-1]+a[i];
for(int len=1;len<n;len++)
for(int i=1;i+len<=n;i++)
{
int mn=len+i;
min1=INT_MAX;
for(int k=i;k<mn;k++)
{
int t=f[i][k]+f[k+1][mn];
if(t<min1)
{
op[i][mn]=k;
min1=t;
}
}
f[i][mn]=min1+w[mn]-w[i-1];
}
printf("%d\n",f[1][n]);
print(1,n);
return 0;
}

觉得有用就顶起来

做如下两个模型的石子合并,如下模型石子都不能移动出列,且合并都仅发生在相邻两堆石子中: (1)第一个模型:一行排列且相邻合并 有n堆石子形成一行(a1,a2,…,an,ai为第i堆石子个数),相邻两堆可合并合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 (2)第二个模型:一圈排列且相邻合并 有n堆石子形成首位相连的一个环形(a1,a2,…,an,ai为第i堆石子个数,an和a1相邻),相邻两堆可合并合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 例如4堆石子,每堆石子个数:9 4 4 5 若排成一行,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+4)+(13+4)+(17+5)=52。 若排成圈状,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+5)+(14+4)+(18+4)=54。 此题以第一模型的最低得分为例,很多同学想着采用总是从最小的相邻两堆下手的思想,最后获得的也就是最低得分。但这个贪心策略是不对的。 如下反例: 石子:9 4 6 1 5 贪心策略: 9 4 6 6 6 9 10 6 10 9 16 16 25 25 得分共计:6+10+16+25=57 但9 4 6 1 5 若如下方式合并: 13 6 1 5 13 13 6 6 6 13 12 12 25 25 13+6+12+25=56 或 9 4 6 6 6 9 4 12 12 13 12 13 25 25 6+12+13+25=56 后两种方式合并出的56都比贪心策略的57来的更低,因为总选择最小的相邻两堆去合并,并不能保证后续每步都可以最小,也许这轮最小导致后续几轮分值较大。 Input 两行。第一行n,第二行a1 a2 … an,每个ai(1<=i<=n)表示第i堆石子的个数,n<=100 Output 两行。第一行是第一个模型的最低得分和最高得分,中间空格相连,第二行是第二个模型的最低得分和最高得分,中间空格相连。 Sample Input 4 9 4 4 5 Sample Output 43 52 43 54 Hint 第一个石子合并模型,和书上3.1节的矩阵连乘问题类似. 假设m[i,j]为合并石子ai…aj, 1≤i≤j≤n,所得到的最小得分,若没有“合并”这个动作,则为0。原问题所求的合并最小值即为m[1,n]。 递推公式如下,其中min表示求最小,sum表示求和. (1) m[i,j]=0, if i=j (2) m[i,j]=min{m[i,k]+m[k+1][j] | for i<=k<j} + sum{a(t) | for i<=t<=j}, if i<j 至于求最大值完全同理. 至于第二个石子合并的环行模型,完全可以转化为第一个模型来求解.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值