描述
-
Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激。可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你。Michael想知道载一个区域中最长的滑坡。区域由一个二维数组给出。数组的每个数字代表点的高度。下面是一个例子
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小。在上面的例子中,一条可滑行的滑坡为24-17-16-1。当然25-24-23-...-3-2-1更长。事实上,这是最长的一条。
输入
-
输入的第一行表示区域的行数R和列数C(1 <= R,C <= 100)。下面是R行,每行有C个整数,代表高度h,0<=h<=10000。
输出
-
输出最长区域的长度。
样例输入
-
5 5
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
样例输出
-
25
这是一道dp题,在OpenJudge上,戳我查看
但我们着重介绍的不是dp,而是记忆化搜索。
所有的dp都可以用记忆化搜索来做,总而言之,dp就是递推版的记忆化搜索,而记忆化搜索则是递归版。
--------------------------分析---------------------------
这是一道很简单的搜索题,只要让每个点都为起点往四个方向走,满足下一个点小于这一个点就好了。但是注意数据规模,1<=C,R<=100,所以我们猜到可能会超时,所以我们可以用记忆化搜索。
所谓记忆化搜索,就是把已经搜索过的点存下来,以避免重复计算,这样做就可以减少计算时间。
代码如下:
int dfs(int x,int y)
{
int dx,dy,tot=0,tmp=0;
if(b[x][y]) return b[x][y];
......
}
如上就是记忆化搜索。
那么再讲一下搜索过程,我们以每个点为起点,所以要写一个for,然后编写一个dfs函数,我们可以定义两个数组,叫d1和d2,d1用来表示横坐标的移动,d2用来表示纵坐标的移动,然后我们就可以得出以下代码:
d1[4]={1,-1,0,0},d2[4]={0,0,1,-1};
for(int i=1;i<=r;i++)
for(int j=1;j<=c;j++)
ans=dfs(i,j);
------------------------代码实现-------------------------
#include<cstdio>
#include<cstring>
const int MN=103;
int a[MN][MN],b[MN][MN],r,c,ans,max,d1[4]={1,-1,0,0},d2[4]={0,0,1,-1};
int dfs(int x,int y)
{
int dx,dy,tot=0,tmp=0;
if(b[x][y]) return b[x][y];
tmp=1;
for(int i=0;i<4;i++)
{
dx=x+d1[i];
dy=y+d2[i];
if(dx&&dy&&dx<=r&&dy<=c&&a[dx][dy]<a[x][y])
{
tot=dfs(dx,dy)+1;
if(tot>tmp) tmp=tot;
}
}
b[x][y]=tmp;
return tmp;
}
int main()
{
scanf("%d%d",&r,&c);
for(int i=1;i<=r;i++)
for(int j=1;j<=c;j++)
scanf("%d",&a[i][j]);
for(int i=1;i<=r;i++)
for(int j=1;j<=c;j++)
{
ans=dfs(i,j);
if(ans>max) max=ans;
}
printf("%d",max);
return 0;
}
觉得有用就顶起来
戳我查看C20190733_ZTde更多博客
戳我查看C20191522_TLde滑雪博客