- 使用大数据,了解怎么处理数据不能一次全部加载到内存的情况。如果你内存充足,当我没说
- 训练好的模型的保存和使用
- 使用的模型没变,还是简单的feedforward神经网络(update:添加CNN模型)
- 如果你要运行本帖代码,推荐使用GPU版本或强大的VPS,我使用小笔记本差点等吐血
- 后续有关于中文的练习《TensorFlow练习13: 制作一个简单的聊天机器人》《TensorFlow练习7: 基于RNN生成古诗词》《TensorFlow练习18: 根据姓名判断性别》
在正文开始之前,我画了一个机器学习模型的基本开发流程图:
使用的数据集
使用的数据集:http://help.sentiment140.com/for-students/ (情绪分析)
数据集包含1百60万条推特,包含消极、中性和积极tweet。不知道有没有现成的微博数据集。
数据格式:移除表情符号的CSV文件,字段如下:
- 0 – the polarity of the tweet (0 = negative, 2 = neutral, 4 = positive)
- 1 – the id of the tweet (2087)
- 2 – the date of the tweet (Sat May 16 23:58:44 UTC 2009)
- 3 – the query (lyx). If there is no query, then this value is NO_QUERY.
- 4 – the user that tweeted (robotickilldozr)
- 5 – the text of the tweet (Lyx is cool)
training.1600000.processed.noemoticon.csv(238M)
testdata.manual.2009.06.14.csv(74K)
数据预处理
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
import
nltk
from
nltk
.
tokenize
import
word_tokenize
from
nltk
.
stem
import
WordNetLemmatizer
import
pickle
import
numpy
as
np
import
pandas
as
pd
from
collections
import
OrderedDict
org_train_file
=
'training.1600000.processed.noemoticon.csv'
org_test_file
=
'testdata.manual.2009.06.14.csv'
# 提取文件中有用的字段
def
usefull_filed
(
org_file
,
output_file
)
:
output
=
open
(
output_file
,
'w'
)
with
open
(
org_file
,
buffering
=
10000
,
encoding
=
'latin-1'
)
as
f
:
try
:
for
line
in
f
:
# "4","2193601966","Tue Jun 16 08:40:49 PDT 2009","NO_QUERY","AmandaMarie1028","Just woke up. Having no school is the best feeling ever "
line
=
line
.
replace
(
'"'
,
''
)
clf
=
line
.
split
(
','
)
[
0
]
# 4
if
clf
==
'0'
:
clf
=
[
0
,
0
,
1
]
# 消极评论
elif
clf
==
'2'
:
clf
=
[
0
,
1
,
0
]
# 中性评论
elif
clf
==
'4'
:
clf
=
[
1
,
0
,
0
]
# 积极评论
tweet
=
line
.
split
(
','
)
[
-
1
]
outputline
=
str
(
clf
)
+
':%:%:%:'
+
tweet
output
.
write
(
outputline
)
# [0, 0, 1]:%:%:%: that's a bummer. You shoulda got David Carr of Third Day to do it. ;D
except
Exception
as
e
:
print
(
e
)
output
.
close
(
)
# 处理完成,处理后文件大小127.5M
usefull_filed
(
org_train_file
,
'training.csv'
)
usefull_filed
(
org_test_file
,
'tesing.csv'
)
# 创建词汇表
def
create_lexicon
(
train_file
)
:
lex
=
[
]
lemmatizer
=
WordNetLemmatizer
(
)
with
open
(
train_file
,
buffering
=
10000
,
encoding
=
'latin-1'
)
as
f
:
try
:
count_word
=
{
}
# 统计单词出现次数
for
line
in
f
:
tweet
=
line
.
split
(
':%:%:%:'
)
[
1
]
words
=
word_tokenize
(
line
.
lower
(
)
)
for
word
in
words
:
word
=
lemmatizer
.
lemmatize
(
word
)
if
word
not
in
count_word
:
count_word
[
word
]
=
1
else
:
count_word
[
word
]
+=
1
count_word
=
OrderedDict
(
sorted
(
count_word
.
items
(
)
,
key
=
lambda
t
:
t
[
1
]
)
)
for
word
in
count_word
:
if
count_word
[
word
]
<
100000
and
count_word
[
word
]
>
100
:
# 过滤掉一些词
lex
.
append
(
word
)
except
Exception
as
e
:
print
(
e
)
return
lex
lex
=
create_lexicon
(
'training.csv'
)
with
open
(
'lexcion.pickle'
,
'wb'
)
as
f
:
pickle
.
dump
(
lex
,
f
)
"""
# 把字符串转为向量
def string_to_vector(input_file, output_file, lex):
output_f = open(output_file, 'w')
lemmatizer = WordNetLemmatizer()
with open(input_file, buffering=10000, encoding='latin-1') as f:
for line in f:
label = line.split(':%:%:%:')[0]
tweet = line.split(':%:%:%:')[1]
words = word_tokenize(tweet.lower())
words = [lemmatizer.lemmatize(word) for word in words]
features = np.zeros(len(lex))
for word in words:
if word in lex:
features[lex.index(word)] = 1 # 一个句子中某个词可能出现两次,可以用+=1,其实区别不大
features = list(features)
output_f.write(str(label) + ":" + str(features) + '\n')
output_f.close()
f = open('lexcion.pickle', 'rb')
lex = pickle.load(f)
f.close()
# lexcion词汇表大小112k,training.vec大约112k*1600000 170G 太大,只能边转边训练了
# string_to_vector('training.csv', 'training.vec', lex)
# string_to_vector('tesing.csv', 'tesing.vec', lex)
"""
|
上面代码把原始数据转为training.csv、和tesing.csv,里面只包含label和tweet。lexcion.pickle文件保存了词汇表。
如果数据文件太大,不能一次加载到内存,可以把数据导入数据库
Dask可处理大csv文件
开始漫长的训练
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
import
os
import
random
import
tensorflow
as
tf
import
pickle
import
numpy
as
np
from
nltk
.
tokenize
import
word
_tokenize
from
nltk
.
stem
import
WordNetLemmatizer
f
=
open
(
'lexcion.pickle'
,
'rb'
)
lex
=
pickle
.
load
(
f
)
f
.
close
(
)
def
get_random_line
(
file
,
point
)
:
file
.
seek
(
point
)
file
.
readline
(
)
return
file
.
readline
(
)
# 从文件中随机选择n条记录
def
get_n_random_line
(
file_name
,
n
=
150
)
:
lines
=
[
]
file
=
open
(
file_name
,
encoding
=
'latin-1'
)
total_bytes
=
os
.
stat
(
file_name
)
.
st
_size
for
i
in
range
(
n
)
:
random_point
=
random
.
randint
(
0
,
total_bytes
)
lines
.
append
(
get_random_line
(
file
,
random_point
)
)
file
.
close
(
)
return
lines
def
get_test_dataset
(
test_file
)
:
with
open
(
test_file
,
encoding
=
'latin-1'
)
as
f
:
test_x
=
[
]
test_y
=
[
]
lemmatizer
=
WordNetLemmatizer
(
)
for
line
in
f
:
label
=
line
.
split
(
':%:%:%:'
)
[
0
]
tweet
=
line
.
split
(
':%:%:%:'
)
[
1
]
words
=
word_tokenize
(
tweet
.
lower
(
)
)
words
=
[
lemmatizer
.
lemmatize
(
word
)
for
word
in
words
]
features
=
np
.
zeros
(
len
(
lex
)
)
for
word
in
words
:
if
word
in
lex
:
features
[
lex
.
index
(
word
)
]
=
1
test_x
.
append
(
list
(
features
)
)
test_y
.
append
(
eval
(
label
)
)
return
test_x
,
test
_y
test_x
,
test_y
=
get_test_dataset
(
'tesing.csv'
)
#######################################################################
n_input_layer
=
len
(
lex
)
# 输入层
n_layer_1
=
2000
# hide layer
n_layer_2
=
2000
# hide layer(隐藏层)听着很神秘,其实就是除输入输出层外的中间层
n_output_layer
=
3
# 输出层
def
neural_network
(
data
)
:
# 定义第一层"神经元"的权重和biases
layer_1_w_b
=
{
'w_'
:
tf
.
Variable
(
tf
.
random_normal
(
[
n_input_layer
,
n_layer_1
]
)
)
,
'b_'
:
tf
.
Variable
(
tf
.
random_normal
(
[
n_layer_1
]
)
)
}
# 定义第二层"神经元"的权重和biases
layer_2_w_b
=
{
'w_'
:
tf
.
Variable
(
tf
.
random_normal
(
[
n_layer_1
,
n_layer_2
]
)
)
,
'b_'
:
tf
.
Variable
(
tf
.
random_normal
(
[
n_layer_2
]
)
)
}
# 定义输出层"神经元"的权重和biases
layer_output_w_b
=
{
'w_'
:
tf
.
Variable
(
tf
.
random_normal
(
[
n_layer_2
,
n_output_layer
]
)
)
,
'b_'
:
tf
.
Variable
(
tf
.
random_normal
(
[
n_output_layer
]
)
)
}
# w·x+b
layer_1
=
tf
.
add
(
tf
.
matmul
(
data
,
layer_1_w_b
[
'w_'
]
)
,
layer_1_w_b
[
'b_'
]
)
layer_1
=
tf
.
nn
.
relu
(
layer_1
)
# 激活函数
layer_2
=
tf
.
add
(
tf
.
matmul
(
layer_1
,
layer_2_w_b
[
'w_'
]
)
,
layer_2_w_b
[
'b_'
]
)
layer_2
=
tf
.
nn
.
relu
(
layer
_2
)
# 激活函数
layer_output
=
tf
.
add
(
tf
.
matmul
(
layer_2
,
layer_output_w_b
[
'w_'
]
)
,
layer_output_w_b
[
'b_'
]
)
return
layer
_output
X
=
tf
.
placeholder
(
'float'
)
Y
=
tf
.
placeholder
(
'float'
)
batch_size
=
90
def
train_neural_network
(
X
,
Y
)
:
predict
=
neural_network
(
X
)
cost_func
=
tf
.
reduce_mean
(
tf
.
nn
.
softmax_cross_entropy_with_logits
(
predict
,
Y
)
)
optimizer
=
tf
.
train
.
AdamOptimizer
(
)
.
minimize
(
cost_func
)
with
tf
.
Session
(
)
as
session
:
session
.
run
(
tf
.
initialize_all_variables
(
)
)
lemmatizer
=
WordNetLemmatizer
(
)
saver
=
tf
.
train
.
Saver
(
)
i
=
0
pre_accuracy
=
0
while
True
:
# 一直训练
batch_x
=
[
]
batch_y
=
[
]
#if model.ckpt文件已存在:
# saver.restore(session, 'model.ckpt') 恢复保存的session
try
:
lines
=
get_n_random_line
(
'training.csv'
,
batch_size
)
for
line
in
lines
:
label
=
line
.
split
(
':%:%:%:'
)
[
0
]
tweet
=
line
.
split
(
':%:%:%:'
)
[
1
]
words
=
word_tokenize
(
tweet
.
lower
(
)
)
words
=
[
lemmatizer
.
lemmatize
(
word
)
for
word
in
words
]
features
=
np
.
zeros
(
len
(
lex
)
)
for
word
in
words
:
if
word
in
lex
:
features
[
lex
.
index
(
word
)
]
=
1
# 一个句子中某个词可能出现两次,可以用+=1,其实区别不大
batch_x
.
append
(
list
(
features
)
)
batch_y
.
append
(
eval
(
label
)
)
session
.
run
(
[
optimizer
,
cost_func
]
,
feed_dict
=
{
X
:
batch_x
,
Y
:
batch_y
}
)
except
Exception
as
e
:
print
(
e
)
# 准确率
if
i
>
100
:
correct
=
tf
.
equal
(
tf
.
argmax
(
predict
,
1
)
,
tf
.
argmax
(
Y
,
1
)
)
accuracy
=
tf
.
reduce_mean
(
tf
.
cast
(
correct
,
'float'
)
)
accuracy
=
accuracy
.
eval
(
{
X
:
test_x
,
Y
:
test_y
}
)
if
accuracy
>
pre_accuracy
:
# 保存准确率最高的训练模型
print
(
'准确率: '
,
accuracy
)
pre_accuracy
=
accuracy
saver
.
save
(
session
,
'model.ckpt'
)
# 保存session
i
=
0
i
+=
1
train_neural_network
(
X
,
Y
)
|
上面程序占用内存600M,峰值1G。
运行:
训练模型保存为model.ckpt。
使用训练好的模型
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
import
tensorflow
as
tf
import
pickle
from
nltk
.
tokenize
import
word_tokenize
from
nltk
.
stem
import
WordNetLemmatizer
import
numpy
as
np
f
=
open
(
'lexcion.pickle'
,
'rb'
)
lex
=
pickle
.
load
(
f
)
f
.
close
(
)
n_input_layer
=
len
(
lex
)
# 输入层
n_layer_1
=
2000
# hide layer
n_layer_2
=
2000
# hide layer(隐藏层)听着很神秘,其实就是除输入输出层外的中间层
n_output_layer
=
3
# 输出层
def
neural_network
(
data
)
:
# 定义第一层"神经元"的权重和biases
layer_1_w_b
=
{
'w_'
:
tf
.
Variable
(
tf
.
random_normal
(
[
n_input_layer
,
n_layer_1
]
)
)
,
'b_'
:
tf
.
Variable
(
tf
.
random_normal
(
[
n_layer_1
]
)
)
}
# 定义第二层"神经元"的权重和biases
layer_2_w_b
=
{
'w_'
:
tf
.
Variable
(
tf
.
random_normal
(
[
n_layer_1
,
n_layer_2
]
)
)
,
'b_'
:
tf
.
Variable
(
tf
.
random_normal
(
[
n_layer_2
]
)
)
}
# 定义输出层"神经元"的权重和biases
layer_output_w_b
=
{
'w_'
:
tf
.
Variable
(
tf
.
random_normal
(
[
n_layer_2
,
n_output_layer
]
)
)
,
'b_'
:
tf
.
Variable
(
tf
.
random_normal
(
[
n_output_layer
]
)
)
}
# w·x+b
layer_1
=
tf
.
add
(
tf
.
matmul
(
data
,
layer_1_w_b
[
'w_'
]
)
,
layer_1_w_b
[
'b_'
]
)
layer_1
=
tf
.
nn
.
relu
(
layer_1
)
# 激活函数
layer_2
=
tf
.
add
(
tf
.
matmul
(
layer_1
,
layer_2_w_b
[
'w_'
]
)
,
layer_2_w_b
[
'b_'
]
)
layer_2
=
tf
.
nn
.
relu
(
layer
_2
)
# 激活函数
layer_output
=
tf
.
add
(
tf
.
matmul
(
layer_2
,
layer_output_w_b
[
'w_'
]
)
,
layer_output_w_b
[
'b_'
]
)
return
layer
_output
X
=
tf
.
placeholder
(
'float'
)
def
prediction
(
tweet_text
)
:
predict
=
neural_network
(
X
)
with
tf
.
Session
(
)
as
session
:
session
.
run
(
tf
.
initialize_all_variables
(
)
)
saver
=
tf
.
train
.
Saver
(
)
saver
.
restore
(
session
,
'model.ckpt'
)
lemmatizer
=
WordNetLemmatizer
(
)
words
=
word_tokenize
(
tweet_text
.
lower
(
)
)
words
=
[
lemmatizer
.
lemmatize
(
word
)
for
word
in
words
]
features
=
np
.
zeros
(
len
(
lex
)
)
for
word
in
words
:
if
word
in
lex
:
features
[
lex
.
index
(
word
)
]
=
1
#print(predict.eval(feed_dict={X:[features]})) [[val1,val2,val3]]
res
=
session
.
run
(
tf
.
argmax
(
predict
.
eval
(
feed_dict
=
{
X
:
[
features
]
}
)
,
1
)
)
return
res
prediction
(
"I am very happe"
)
|
上面使用简单的feedfroward模型,下面使用CNN模型
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
# https://github.com/Lab41/sunny-side-up
import
os
import
random
import
tensorflow
as
tf
import
pickle
import
numpy
as
np
from
nltk
.
tokenize
import
word_tokenize
from
nltk
.
stem
import
WordNetLemmatizer
f
=
open
(
'lexcion.pickle'
,
'rb'
)
lex
=
pickle
.
load
(
f
)
f
.
close
(
)
def
get_random_line
(
file
,
point
)
:
file
.
seek
(
point
)
file
.
readline
(
)
return
file
.
readline
(
)
# 从文件中随机选择n条记录
def
get_n_random_line
(
file_name
,
n
=
150
)
:
lines
=
[
]
file
=
open
(
file_name
,
encoding
=
'latin-1'
)
total_bytes
=
os
.
stat
(
file_name
)
.
st_size
for
i
in
range
(
n
)
:
random_point
=
random
.
randint
(
0
,
total_bytes
)
lines
.
append
(
get_random_line
(
file
,
random_point
)
)
file
.
close
(
)
return
lines
def
get_test_dataset
(
test_file
)
:
with
open
(
test_file
,
encoding
=
'latin-1'
)
as
f
:
test_x
=
[
]
test_y
=
[
]
lemmatizer
=
WordNetLemmatizer
(
)
for
line
in
f
:
label
=
line
.
split
(
':%:%:%:'
)
[
0
]
tweet
=
line
.
split
(
':%:%:%:'
)
[
1
]
words
=
word_tokenize
(
tweet
.
lower
(
)
)
words
=
[
lemmatizer
.
lemmatize
(
word
)
for
word
in
words
]
features
=
np
.
zeros
(
len
(
lex
)
)
for
word
in
words
:
if
word
in
lex
:
features
[
lex
.
index
(
word
)
]
=
1
test_x
.
append
(
list
(
features
)
)
test_y
.
append
(
eval
(
label
)
)
return
test_x
,
test_y
test_x
,
test_y
=
get_test_dataset
(
'tesing.csv'
)
##############################################################################
input_size
=
len
(
lex
)
num_classes
=
3
X
=
tf
.
placeholder
(
tf
.
int32
,
[
None
,
input_size
]
)
Y
=
tf
.
placeholder
(
tf
.
float32
,
[
None
,
num_classes
]
)
dropout_keep_prob
=
tf
.
placeholder
(
tf
.
float32
)
batch_size
=
90
def
neural_network
(
)
:
# embedding layer
with
tf
.
device
(
'/cpu:0'
)
,
tf
.
name_scope
(
"embedding"
)
:
embedding_size
=
128
W
=
tf
.
Variable
(
tf
.
random_uniform
(
[
input_size
,
embedding_size
]
,
-
1.0
,
1.0
)
)
embedded_chars
=
tf
.
nn
.
embedding_lookup
(
W
,
X
)
embedded_chars_expanded
=
tf
.
expand_dims
(
embedded_chars
,
-
1
)
# convolution + maxpool layer
num_filters
=
128
filter_sizes
=
[
3
,
4
,
5
]
pooled_outputs
=
[
]
for
i
,
filter_size
in
enumerate
(
filter_sizes
)
:
with
tf
.
name_scope
(
"conv-maxpool-%s"
%
filter_size
)
:
filter_shape
=
[
filter_size
,
embedding_size
,
1
,
num_filters
]
W
=
tf
.
Variable
(
tf
.
truncated_normal
(
filter_shape
,
stddev
=
0.1
)
)
b
=
tf
.
Variable
(
tf
.
constant
(
0.1
,
shape
=
[
num_filters
]
)
)
conv
=
tf
.
nn
.
conv2d
(
embedded_chars_expanded
,
W
,
strides
=
[
1
,
1
,
1
,
1
]
,
padding
=
"VALID"
)
h
=
tf
.
nn
.
relu
(
tf
.
nn
.
bias_add
(
conv
,
b
)
)
pooled
=
tf
.
nn
.
max_pool
(
h
,
ksize
=
[
1
,
input_size
-
filter_size
+
1
,
1
,
1
]
,
strides
=
[
1
,
1
,
1
,
1
]
,
padding
=
'VALID'
)
pooled_outputs
.
append
(
pooled
)
num_filters_total
=
num_filters
*
len
(
filter_sizes
)
h_pool
=
tf
.
concat
(
3
,
pooled_outputs
)
h_pool_flat
=
tf
.
reshape
(
h_pool
,
[
-
1
,
num_filters_total
]
)
# dropout
with
tf
.
name_scope
(
"dropout"
)
:
h_drop
=
tf
.
nn
.
dropout
(
h_pool_flat
,
dropout_keep_prob
)
# output
with
tf
.
name_scope
(
"output"
)
:
W
=
tf
.
get_variable
(
"W"
,
shape
=
[
num_filters_total
,
num_classes
]
,
initializer
=
tf
.
contrib
.
layers
.
xavier_initializer
(
)
)
b
=
tf
.
Variable
(
tf
.
constant
(
0.1
,
shape
=
[
num_classes
]
)
)
output
=
tf
.
nn
.
xw_plus_b
(
h_drop
,
W
,
b
)
return
output
def
train_neural_network
(
)
:
output
=
neural_network
(
)
optimizer
=
tf
.
train
.
AdamOptimizer
(
1e
-
3
)
loss
=
tf
.
reduce_mean
(
tf
.
nn
.
softmax_cross_entropy_with_logits
(
output
,
Y
)
)
grads_and_vars
=
optimizer
.
compute_gradients
(
loss
)
train_op
=
optimizer
.
apply_gradients
(
grads_and_vars
)
saver
=
tf
.
train
.
Saver
(
tf
.
global_variables
(
)
)
with
tf
.
Session
(
)
as
sess
:
sess
.
run
(
tf
.
global_variables_initializer
(
)
)
lemmatizer
=
WordNetLemmatizer
(
)
i
=
0
while
True
:
batch_x
=
[
]
batch_y
=
[
]
#if model.ckpt文件已存在:
# saver.restore(session, 'model.ckpt') 恢复保存的session
try
:
lines
=
get_n_random_line
(
'training.csv'
,
batch_size
)
for
line
in
lines
:
label
=
line
.
split
(
':%:%:%:'
)
[
0
]
tweet
=
line
.
split
(
':%:%:%:'
)
[
1
]
words
=
word_tokenize
(
tweet
.
lower
(
)
)
words
=
[
lemmatizer
.
lemmatize
(
word
)
for
word
in
words
]
features
=
np
.
zeros
(
len
(
lex
)
)
for
word
in
words
:
if
word
in
lex
:
features
[
lex
.
index
(
word
)
]
=
1
# 一个句子中某个词可能出现两次,可以用+=1,其实区别不大
batch_x
.
append
(
list
(
features
)
)
batch_y
.
append
(
eval
(
label
)
)
_
,
loss_
=
sess
.
run
(
[
train_op
,
loss
]
,
feed_dict
=
{
X
:
batch_x
,
Y
:
batch_y
,
dropout_keep_prob
:
0.5
}
)
print
(
loss_
)
except
Exception
as
e
:
print
(
e
)
if
i
%
10
==
0
:
predictions
=
tf
.
argmax
(
output
,
1
)
correct_predictions
=
tf
.
equal
(
predictions
,
tf
.
argmax
(
Y
,
1
)
)
accuracy
=
tf
.
reduce_mean
(
tf
.
cast
(
correct_predictions
,
"float"
)
)
accur
=
sess
.
run
(
accuracy
,
feed_dict
=
{
X
:
test_x
[
0
:
50
]
,
Y
:
test_y
[
0
:
50
]
,
dropout_keep_prob
:
1.0
}
)
print
(
'准确率:'
,
accur
)
i
+=
1
train_neural_network
(
)
|
使用了CNN模型之后,准确率有了显著提升。