给定字符串,求它的回文子序列个数。回文子序列反转字符顺序后仍然与原序列相同。例如字符串aba中,回文子序列为"a", "a", "aa", "b", "aba",共5个。内容相同位置不同的子序列算不同的子序列。
输入
第一行一个整数T,表示数据组数。之后是T组数据,每组数据为一行字符串。
输出
对于每组数据输出一行,格式为"Case #X: Y",X代表数据编号(从1开始),Y为答案。答案对100007取模。
数据范围
1 ≤ T ≤ 30
小数据
字符串长度 ≤ 25
大数据
字符串长度 ≤ 1000
题解:
1.s[i] != s[j] dp[i][j] = dp[i + 1][j] + dp[i][j - 1] - dp[i + 1][j - 1]
2.s[i] == s[j] dp[i][j] = dp[i + 1][j] + dp[i][j - 1] + 1
总结:
1.动态规划学的真是不好,感觉这个题目并不是特别的难,但是没有想出来
2.算是一种,缩小问题规模的经典习题吧
3.大概现在所理解的动态规划就是,
背包问题这类:枚举横纵坐标表示状态的问题
区间这类:逐步缩小问题规模的问题
状态压缩:只记录存在的状态,而省略状态顺序的问题
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define MAXN 1005
#define MOD 100007
int dp[MAXN][MAXN];
char s[MAXN];
int main()
{
int _;
for(int kcas = scanf("%d",&_);kcas <= _;kcas++)
{
memset(dp,0,sizeof(dp));
scanf("%s",s + 1);
int n = strlen(s + 1);
for(int k = 0;k <= n;k++)
{
for(int i = 1;i + k <= n;i++)
{
int j = i + k;
if(s[i] == s[j])dp[i][j] = (dp[i + 1][j] + dp[i][j - 1] + 1) % MOD;
else dp[i][j] = ((dp[i + 1][j] + dp[i][j - 1] - dp[i + 1][j - 1]) % MOD + MOD) % MOD;
}
}
printf("Case #%d: %d\n",kcas,dp[1][n]);
}
}