hihoCoder 1149 回文字符序列

给定字符串,求它的回文子序列个数。回文子序列反转字符顺序后仍然与原序列相同。例如字符串aba中,回文子序列为"a", "a", "aa", "b", "aba",共5个。内容相同位置不同的子序列算不同的子序列。

输入

第一行一个整数T,表示数据组数。之后是T组数据,每组数据为一行字符串。

输出

对于每组数据输出一行,格式为"Case #X: Y",X代表数据编号(从1开始),Y为答案。答案对100007取模。

数据范围

1 ≤ T ≤ 30

小数据

字符串长度 ≤ 25

大数据

字符串长度 ≤ 1000

题解:

1.s[i] != s[j]    dp[i][j] = dp[i + 1][j] + dp[i][j - 1] - dp[i + 1][j - 1]

2.s[i] == s[j]   dp[i][j] = dp[i + 1][j] + dp[i][j - 1] + 1

总结:

1.动态规划学的真是不好,感觉这个题目并不是特别的难,但是没有想出来

2.算是一种,缩小问题规模的经典习题吧

3.大概现在所理解的动态规划就是,

背包问题这类:枚举横纵坐标表示状态的问题

区间这类:逐步缩小问题规模的问题

状态压缩:只记录存在的状态,而省略状态顺序的问题


#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define MAXN 1005
#define MOD 100007
int dp[MAXN][MAXN];
char s[MAXN];
int main()
{
    int _;
    for(int kcas = scanf("%d",&_);kcas <= _;kcas++)
    {
        memset(dp,0,sizeof(dp));
        scanf("%s",s + 1);
        int n = strlen(s + 1);
        for(int k = 0;k <= n;k++)
        {
            for(int i = 1;i + k <= n;i++)
            {
                int j = i + k;
                if(s[i] == s[j])dp[i][j] = (dp[i + 1][j] + dp[i][j - 1] + 1) % MOD;
                else dp[i][j] = ((dp[i + 1][j] + dp[i][j - 1] - dp[i + 1][j - 1]) % MOD + MOD) % MOD;
            }
        }
        printf("Case #%d: %d\n",kcas,dp[1][n]);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值