题目描述
小明对数位中含有 2、0、1、9 的数字很感兴趣(不包括前导 0),在 1 到 40 中这样的数包括 1、2、9、10 至 32、39和 40,共 28 个,他们的和是 574。
请问,在 1 到 n 中,所有这样的数的和是多少?
输入格式
输入一行包含两个整数 n。
输出格式
输出一行,包含一个整数,表示满足条件的数的和。
输入输出样例
输入:40
输出:574
说明/提示
对于 20\%20% 的评测用例,1 \le n \le 101≤n≤10。
对于 50\%50% 的评测用例,1 \le n \le 1001≤n≤100。
对于 80\%80% 的评测用例,1 \le n \le 10001≤n≤1000。
对于所有评测用例,1 \le n \le 100001≤n≤10000。
蓝桥杯 2019 省赛 B 组 F 题。
做题思路
题目比较简单,直接求出每一位上的数,而后判断它们是否为2,0,1,9中的某个即可,值得注意的是,一个数如果含有上述的数中的一个就计算,且不能重复计算,如20,既有2又有0,只能算一次,直接上代码。
#include<stdio.h>
int main()
{
int n,i,sum=0;
scanf("%d",&n);
int a[5];
for(i=1;i<=n;i++)
{
a[0]=i%10;
a[1]=i/10%10;
a[2]=i/100%10;
a[3]=i/1000%10;
a[4]=i/10000;
if(i<10)
{
if(i==2||i==1||i==9)
{
sum+=i;
}
}
if(i>=10&&i<100)
{
for(int j=0;j<2;j++)
{
if(a[j]==2||a[j]==1||a[j]==9||a[j]==0)
{
sum+=i;
break;
}
}
}
if(i>=100&&i<1000)
{
for(int j=0;j<3;j++)
{
if(a[j]==2||a[j]==1||a[j]==9||a[j]==0)
{
sum+=i;
break;
}
}
}
if(i>=1000&&i<10000)
{
for(int j=0;j<4;j++)
{
if(a[j]==2||a[j]==1||a[j]==9||a[j]==0)
{
sum+=i;
break;
}
}
}
}
printf("%d",sum);
return 0;
}