CF 1051E - Vasya and Big Integers 扩展KMP DP

13 篇文章 0 订阅
3 篇文章 0 订阅

题意:

给你一个由数字构成的字符串,问你有多少种划分方式,使得每段不含前导0,并且每段的数字大小在[l, r]之间。

题解:

很明显的DP。

dp[i]为下标为i时的划分数,设ll为以i+1开始,最小的大于l的位置, rr为以i+1开始,最大的小于r的位置,

那么dp[ll], dp[ll + 1]......dp[rr]都要+d[i],用前缀和或者线段树都行。

关键在与怎么求ll, rr。

其实是大数的大小比较问题。

只要求个lcp,然后判断lcp后面一位的大小即可。

用扩展kmp来O(n)求出当前串每个后缀和另一个串的公共前缀即可。

总时间复杂度O(n)

代码:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
#include <bitset>
#include <map>
#include <vector>
#include <stack>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <cmath>
#include <ctime>
#ifdef LOCAL
#define debug(x) cout<<#x<<" = "<<(x)<<endl;
#else
#define debug(x) 1;
#endif

#define chmax(x,y) x=max(x,y)
#define chmin(x,y) x=min(x,y)
#define lson id<<1,l,mid
#define rson id<<1|1,mid+1,r
#define lowbit(x) x&-x
#define mp make_pair
#define pb push_back
#define fir first
#define sec second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, int> pii;

const int MOD = 998244353;
const double PI = acos (-1.);
const double eps = 1e-10;
const int INF = 0x3f3f3f3f;
const ll INFLL = 0x3f3f3f3f3f3f3f3f;
const int MAXN = 2e6 + 5;

int nxt[MAXN], extend1[MAXN], extend2[MAXN];

void GetNext (char *T) {
    int a = 0;
    int Tlen = strlen (T);
    nxt[0] = Tlen;
    while (a < Tlen - 1 && T[a] == T[a + 1]) a++;
    nxt[1] = a;
    a = 1;
    for (int k = 2; k < Tlen; k++) {
        int p = a + nxt[a] - 1, L = nxt[k - a];
        if ( (k - 1) + L >= p) {
            int j = (p - k + 1) > 0 ? p - k + 1 : 0;
            while (k + j < Tlen && T[k + j] == T[j]) j++;
            nxt[k] = j;
            a = k;
        } else nxt[k] = L;
    }
}

void GetExtend (char *S, char *T, int * extend) {
    int a = 0;
    int Slen = strlen (S);
    int Tlen = strlen (T);
    GetNext (T);
    int MinLen = Slen < Tlen ? Slen : Tlen;
    while (a < MinLen && S[a] == T[a]) a++;
    extend[0] = a;
    a = 0;
    for (int k = 1; k < Slen; k++) {
        int p = a + extend[a] - 1, L = nxt[k - a];
        if ( (k - 1) + L >= p) {
            int j = (p - k + 1) > 0 ? p - k + 1 : 0;
            while (k + j < Slen && j < Tlen && S[k + j] == T[j]) j++;
            extend[k] = j;
            a = k;
        } else extend[k] = L;
    }
}

char a[MAXN], l[MAXN], r[MAXN];

ll d[MAXN];


int main() {
#ifdef LOCAL
    freopen ("input.txt", "r", stdin);
#endif
    scanf("%s %s %s", a, l, r);
    GetExtend(a, l, extend1);
    GetExtend(a, r, extend2);
    int n = strlen(a), len1 = strlen(l), len2 = strlen(r);
    int f = (len1 == 1 && l[0] == '0');
    ll now = 1;
    d[0] = MOD - 1;
    for (int i = 0; i < n; i++) {
        int ll, rr;
        if (a[i] == '0') {
            if (f) ll = rr = i;
            else {
                now = (now + d[i]) % MOD;
                continue;
            }
        } else {
            if (extend1[i] == len1) ll = i + len1 - 1;
            else if (a[i + extend1[i]] < l[extend1[i]]) ll = i + len1;
            else ll = i + len1 - 1;

            if (extend2[i] == len2) rr = i + len2 - 1;
            else if (a[i + extend2[i]] > r[extend2[i]]) rr = i + len2 - 2;
            else rr = i + len2 - 1;
        }
        d[ll] = (d[ll] + now) % MOD;
        d[rr + 1] = (d[rr + 1] - now + MOD) % MOD;
        now = (now + d[i]) % MOD;
    }
    printf("%lld\n", now);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值