1065B - Vasya and Isolated Vertices(图论/思维)(公式)

这篇博客探讨了一个无向图问题,其中涉及求解节点度数为0的节点数量的最大值和最小值。通过分析,得出最少零点度数为max(N-2M,0),而最大值可以通过构造局部完全图和利用公式(n-(1+sqrt(1+8*m))/2)得出。博客提供了不同方法的C++实现,包括逐步构造和直接应用公式。" 111622545,10295574,使用OpenCV计算形状质心与识别Blob,"['opencv识别特定形状', '图像处理', '计算机视觉', 'C++']
摘要由CSDN通过智能技术生成

Description
求一个N个点M条边的无向图,点度为 0 的点最多和最少的数量。

N≤105,M≤N×(N−1)2

Solution
关于最少的数量,注意到一条边会增加两个点度,所以最多能带来 2M 个点度,最少的零点度点数就是 max(N−2M,0)。

关于最多的数量,要知道 N 个点的完全图边数是 N×(N−1)2 。然后就可以二分上界是什么了。

可以打表递推,也可以直接利用完全图的性质,甚至有公式

c++代码一:利用行政扫一遍

#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 100010
#define R register
#define gc getchar
using namespace std;
typedef long long ll;

inline int rd(){
   
  int x=0; bool f=0; char c=gc();
  while(!isdigit(c)){
   if(c=='-')f=1;c=gc();}
  while(isdigit(c)){
   x=(x<<1)+(x<<3)+(c^
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值