将n个相同小球放入m个不同盒子内的放法种数

现在有10个球,要放进3个盒子里

●●●●●●●●●●

隔2个板子,把10个球被隔开成3个部份

●|●|●●●●●●●●、●|●●|●●●●●●●、●|●●●|●●●●●●、●|●●●●|●●●●●、●|●●●●●|●●●●、●|●●●●●●|●●●、......

如此类推,10个球放进3个盒子的方法总数为

n个球放进k个盒子的方法总数为

问题等价于求的可行解数,其中为正整数

**如果允许有空盒子**:

现在有10个球,要放进3个盒子里,并允许空盒子。考虑10+3个球的情况:

●|●|●●●●●●●●●●●

从3个盒子里各拿走一个,得到一种情况,如此类推:

||●●●●●●●●●●、|●|●●●●●●●●●、|●●|●●●●●●●●、|●●●|●●●●●●●、|●●●●|●●●●●●、......

n个球放进k个盒子的方法总数(允许空盒子)为[2]

问题等价于求的可行解数,其中为非负整数

也是展开式的项数,这是因为展开后每一项肯定是a1^x1*a2^x2*......*ak^xk,而且x1+x2+...+xk=n.那就转化为上面那个问题了。

另一种变形:

减少球数用隔板法   

    将20个相同的小球放入编号分别为1,2,3,4的四个盒子中,要求每个盒子中的球数不少于它的编号数,求放法总数。  

    分析:先在编号1,2,3,4的四个盒子内分别放0,1,2,3个球,剩下14个无区别的球,问题等价于将14个球放入4个编号为1,2,3,4的四个盒子里,每个盒子至少有一个球的问题。

   剩下14个无区别的球排成一列,共形成13个空,可以理解为有3块隔板,将排成一列的球隔成4段,每段至少1个,有C3/13=286(种)。 


在C++中解决这个问题的一个常见策略是使用深度优先搜索(DFS)或广度优先搜索(BFS)。这里我们先用深度优先搜索为例,因为递归是自然的解决方案: ```cpp #include <iostream> using namespace std; // 用于存储当前状态 struct BoxState { int balls[11]; // 假设最多10个球,m=10 int count; // 当前填满的盒子数量 }; // 动态数组,表示从0到n的所有组合数 int factorial(int n); // 计算组合数 C(n, k) int combinations(int n, int k) { return factorial(n) / (factorial(k) * factorial(n - k)); } // 递归函数,用于生成所有可能的配置 void generateConfigurations(BoxState& state, int ballsLeft, int boxesFilled) { if (ballsLeft == 0 && boxesFilled == m) { // 所有的球都在了盒子里,输出配置并计数 for (int i = 0; i <= m; ++i) { cout << "Box " << i << ": " << state.balls[i] << endl; } cout << "Total configurations: " << state.count << endl; return; } // 从剩余的球中选择一个放入下一个盒子 for (int i = min(ballsLeft, m - boxesFilled); i > 0; --i) { // 将球放入盒子 state.balls[boxesFilled] = i; state.count++; // 递归处理剩下的球 generateConfigurations(state, ballsLeft - i, boxesFilled + 1); // 撤销操作,以便尝试其他可能性 state.balls[boxesFilled] -= i; state.count--; } } // 计算阶乘 int factorial(int n) { if (n == 0 || n == 1) return 1; return n * factorial(n - 1); } int main() { int n, m; cout << "Enter the number of balls (n): "; cin >> n; cout << "Enter the number of boxes (m): "; cin >> m; BoxState initialState; initialState.count = 0; generateConfigurations(initialState, n, 0); return 0; } ``` 这个程序首先读取球的数量 `n` 和盒子的数量 `m`,然后初始化一个结构体 `BoxState` 来记录每一步的状态。递归函数 `generateConfigurations` 负责生成所有可能的配置,每次递归时都会尝试把一个球到下一个未满的盒子中,直到所有的球都被分。最后,在主函数中调用该函数开始探索。 注意:这个代码假设了球和盒子的数量都不大,如果数据范围较大,可能需要优化存储或使用更高效的算
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值