34、深入探索k-means聚类算法及其应用

深入探索k-means与高斯混合聚类算法

深入探索k-means聚类算法及其应用

1. 数据探索与k-means引入

在数据探索中,对数字数据集中仅包含“1”的数据进行Isomap嵌入,结果能让我们了解数据集中数字“1”的各种形态。数据在投影空间中沿着一条宽曲线分布,似乎追踪着数字的方向。随着在图中向上移动,可以发现带有“帽子”和/或“底座”的“1”,不过这些在数据集中非常稀疏。这种投影有助于识别存在数据问题的离群值,例如相邻数字的部分混入提取图像中。虽然这本身对数字分类任务可能没有直接用处,但有助于我们理解数据,并为后续处理提供思路,比如在构建分类管道之前如何对数据进行预处理。

接下来,我们从降维这一无监督机器学习模型类别转向聚类算法。聚类算法旨在从数据的属性中学习,对数据点进行最优划分或离散标记。在众多聚类算法中,k-means聚类算法相对容易理解,它在 sklearn.cluster.KMeans 中实现。以下是标准的导入代码:

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()  # for plot styling
import numpy as np
2. k-means算法原理

k-means算法在无标签的多维数据集中搜索预定数量的聚类。它基于以下两个简单假设来实现最优聚类:
- 聚类中心是属于该聚类的所有点的算术平均值。
- 每个点离自己的聚类中心比离其他聚类中心更近。

为了直观展示,我们先生成一个包

内容概要:本文详细介绍了一个基于CNN-GRU与AdaBoost集成的深度学习模型在时间序列预测中的完整项目实现。该模型通过卷积神经网络(CNN)提取局部时空特征,利用门控循环单元(GRU)捕捉长期时序依赖,并结合AdaBoost自适应提升算法增强模型泛化能力与鲁棒性,有效应对非线性、噪声干扰和复杂动态变化的挑战。项目涵盖从数据生成、预处理、模型构建、训练优化到结果可视化和GUI交互界面开发的全流程,提供了完整的代码示例与模块化系统架构设计,支持金融、能源、交通、医疗等多个领域的高精度预测应用。; 适合人群:具备一定Python编程基础和机器学习知识,熟悉深度学习框架(如TensorFlow/Keras)的数据科学家、算法工程师及高校研究人员,尤其适合从事时间序列分析、智能预测系统开发的相关从业者。; 使用场景及目标:①实现高精度时间序列预测,如股票价格、电力负荷、交通流量等;②构建具备强鲁棒性和抗噪能力的工业级预测系统;③开发集成深度学习与集成学习的复合模型以提升预测稳定性;④通过GUI界面实现模型的便捷部署与交互式分析。; 阅读建议:建议读者结合文档中的代码逐步实践,重点关注数据预处理、模型集成机制与可视化模块的设计逻辑,同时可在不同数据集上进行迁移实验,深入理解CNN-GRU与AdaBoost协同工作的原理与优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值