简单lstm

lstm原理

lstm可以一定长度上解决梯度消失问题

 

候选记忆单元(包含了新的信息):

                            

遗忘门使用: 遗忘门*上一次的记忆单元

                        ​​​​​​​        

输入门的使用: 输入门*候选记忆单元

        ​​​​​​​        ​​​​​​​        ​​​​​​​        

记忆单元:

        ​​​​​​​        

输出门的使用: 输出门*记忆单元

        ​​​​​​​        

import torch

def get_lstm_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size 
    # 这里简写了 num_input=embedding_dim num_output=vocab_size

    def normal(shape): # 按标准差 0.01的高斯分布初始化权重 bias 0
        return torch.randn(size=shape, device=device)*0.01

    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))


    W_xi, W_hi, b_i = three()  # 输入门参数
    W_xf, W_hf, b_f = three()  # 遗忘门参数
    W_xo, W_ho, b_o = three()  # 输出门参数
    W_xc, W_hc, b_c = three()  # 候选记忆元参数

    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)

    # 附加梯度
    params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc,
              b_c, W_hq, b_q]

    for param in params:
        param.requires_grad_(True)

    return params

# 初始化lstm (h, c) 为0
def init_lstm_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device),
            torch.zeros((batch_size, num_hiddens), device=device))


def lstm(inputs, state, params):
    [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
     W_hq, b_q] = params

    (H, C) = state

    outputs = []
    for X in inputs: # 门:sigmoid 信息:tanh
        # 输入门
        I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)
        # 遗忘门
        F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)
        # 输出门
        O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)

        # 候选记忆元(新信息)
        C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)

        # 记忆元 = 遗忘门*上一次记忆元 + 输入门*候选记忆元
        C = F * C + I * C_tilda

        # H = 输出门 * C
        H = O * torch.tanh(C)

        # 输出层 output(有的直接append(H))
        Y = (H @ W_hq) + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H, C)

lstm输出

lstm输入: seq_len, batch_size, embedding

       输出: output: seq_len, batch_size, n_direction*hid_dim

                hidden: n_direction*num_layers, batch_size, hid_dim

                cell: n_direction*num_layers, batch_size, hid_dim

gru输出

gru输入: seq_len, batch_size, embedding

     输出: output: seq_len, batch_size, n_direction*hid_dim

              hidden: n_direction*num_layers, batch_size, hid_dim

lstm输出中output和h的关系:

        单向时 h相当于最后一个时间步输出,相当于output[ -1 ;  ; ]

        一对一输出的话用output

        分类的话用hidden最后一层 双向可以用 hidden[ -2 ; ; ] 和 hidden[ -1 ; ; ] 拼接

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值